Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: 2023
Clear
  • The Use of Native Vegetation for Structural Stability in Dredged Material Placement Areas: A Case Study of Beneficial Use Site 4A, Chocolate Bayou, Brazoria County, Texas

    PURPOSE: This technical note is the third in a series about using native plant communities to enhance dredge material placement areas (DMPAs), confined disposal facilities (CDFs), and projects where dredged sediments are used for various engineering purposes. DMPAs and CDFs occur in numerous locations spanning different geographic locations nationwide. Oftentimes, these containment dikes are constructed using earthen materials. The materials are either barged in from an off-site location or obtained on-site from new or virgin materials, consisting of heavy clay particles and sediments removed from the nearby channel. In the Gulf Coast region of the United States, new or virgin materials are obtained during channel deepening activities using mechanical or hydraulic dredging methods. Examples of these dredging methods include hopper dredge, pipeline dredge, and excavator or bucket dredge. When materials are considered suitable for beneficial use purposes, and following environmental compliance, the materials are often used to construct containment dikes in DMPAs and CDFs. The project site used in this study—Beneficial Use Site 4A (BUS 4A)—used dredged material during its construction and has periodically received dredged material to maintain its target elevation of 2 ft (0.67 m) above the mean lower low water; hence, this site presents an opportunity for use as a demonstration study. Project goals include (1) demonstrating the use of native plant communities to provide structural stability, (2) introducing targeted vegetation establishment on DMPAs and CDFs as a management strategy to improve engineering and environmental outcomes, and (3) providing technology transfer to the U.S. Army Corps of Engineers (USACE) districts through hands-on planting techniques and installation of natural material (in this demonstration, coir logs).
  • The Use of Native Vegetation and Natural Materials in Shoreline Stabilization: A Case Study of Bubble Gum Beach, Rehoboth Beach, Delaware

    PURPOSE: This technical note is the fourth in a series about using native plant communities to achieve engineering and ecological purposes such as shoreline stabilization, structural enhancements, habitat creation, and ecosystem development. In this series, we demonstrate the utility of natural materials (specifically, native vegetation, oyster reefs, and coir logs) in living shoreline projects. Plant species and plant communities play critical roles in wave attenuation and sediment accretion in coastal areas. The application of vegetation in the coastal areas, especially on the East and Gulf Coasts, has focused heavily on the creation of living shorelines—serving both environmental and engineering purposes. This technical note documents the workshop conducted by the US Army Engineering Research and Development Center (ERDC) and hosted by the US Army Corps of Engineers’ (USACE) Philadelphia District (NAP) and Center for the Inland Bays. The goals of this technical note are (1) to demonstrate the application of native plant communities, oyster shells, and coir (coconut) materials and their installation techniques along shorelines to the engineering community; (2) to demonstrate how targeted vegetation establishment can facilitate ecosystem development along shorelines to improve engineering and environmental outcomes; and (3) to provide native vegetation installation techniques for living shorelines projects’ purposes.
  • Selection of a Time Series of Beneficial Use Wetland Creation Sites in the Sabine National Wildlife Refuge for Use in Restoration Trajectory Development

    PURPOSE: The development of regional restoration trajectories of marsh creation and nourishment projects is key to improved design, management, and implementation of adaptive management principles. Synthesizing information from multiple marsh creation projects constructed at various times but with consistent site characteristics and borrow material sources, helps elucidate restoration success in a specific region. Specifically, this technical note (TN) documents the process of determining a suitable study area, construction methods, and the current state of establishing sites in the Louisiana Gulf Coast that could be used for restoration trajectory development. This investigation compiled information from the construction phases, Landset 8 satellite imagery, and the most recent digital elevation model (DEM) to investigate elevation and vegetation establishment within these sites.
  • Applicability of CoastSnap, a Crowd-Sourced Coastal Monitoring Approach for US Army Corps of Engineers District Use

    Abstract: This US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, technical report details the pilot deployment, accuracy evaluation, and best practices of the citizen-science, coastal-image monitoring program CoastSnap. Despite the need for regular observational data, many coastlines are monitored infrequently due to cost and personnel, and this cell phone-image-based approach represents a new potential data source to districts in addition to providing an outreach opportunity for the public. Requiring minimal hardware and signage, the system is simple to install but requires user-image processing. Analysis shows the CoastSnap-derived shorelines compare well to real-time kinematic and lidar-derived shorelines during low-to-moderate wave conditions (root mean square errors [RMSEs] <10 m). During high-wave conditions, errors are higher (RMSE up to 18 m) but are improved when incorporating wave run-up. Beyond shoreline quantification, images provide other qualitative information such as storm-impact characteristics and timing of the formation of beach scarps. Ultimately, the citizen-science tool is a viable low-cost option to districts for monitoring shorelines and tracking the evolution of coastal projects such as beach nourishments.
  • Resilience Modeling for Civil Military Operations with the Framework Incorporating Complex Uncertainty Systems

    Abstract: Framework Incorporating Complex Uncertain Systems (FICUS) provides geographic risk analysis capabilities that will dramatically improve military intelligence in locations with the Engineer Research and Development’s (ERDC) demographic and infrastructure models built and calibrated. When completed, FICUS would improve intelligence products by incorporating existing tools from the National Geospatial Intelligence Agency, ERDC, and FICUS prototype models, even in places without demographic or infrastructure capabilities. FICUS would support higher-fidelity intelligence analysis of population, environmental, and infrastructure interaction in areas with Human Infrastructure System Assessment (HISA) and urban security models built and calibrated. This technical report will demonstrate FICUS prototype tools that allow Civil Affairs Soldiers to provide situational awareness information via a browser interface.
  • Proceedings from the US Army Corps of Engineers (USACE) 2021 Beneficial Use of Dredged Material Virtual Workshop

    Abstract: On 13–15 July 2021, 58 representatives from Headquarters, US Army Corps of Engineers (USACE), 2 USACE Divisions, 14 USACE districts, and US Army Engineer Research and Development Center’s (ERDC) Environmental (EL) and Coastal Hydraulics (CHL) Laboratories came together and participated in a virtual workshop on the beneficial use (BU) of dredged material. The overall goal was to organize the BU community across USACE and develop a path forward to increase BU practices. Talks and discussions focused on the current status of BU across USACE, including success stories on innovative BU projects, challenges related to regulatory issues, state and federal policies, technical logistics, and stakeholder engagement, as well opportunities for expanding current practices to include more regular and innovative applications. The workshop was cohosted by Dr. Amanda Tritinger (CHL) and Dr. Kelsey Fall (CHL) on behalf of the Engineering With Nature®, Coastal Inlets Research Program, Dredging Operations and Environmental Research, and Regional Sediment Management research programs. The workshop concluded by introducing and awarding the first annual Timothy L. Welp Award for Advancing Beneficial Use of Dredged Sediments to recognize teams (with members across and outside of USACE) that have advanced progress on BU through collaboration, partnering, and innovation.
  • Dining Facility Whole-Building Evaluation to Reduce Solid Waste: Opportunities and Best Practices for Optimization and Management of Food Waste

    On military installations, an average of 1.2 pounds in food waste is dis-posed per person per day, accounting for 68% of dining facility (DFAC) refuse and 46% of the total installation refuse stream, making food waste the heaviest portion of installation solid waste. At a single installation, this can contribute up to 1.5 million dollars lost yearly from food waste alone. Department of Defense Instruction (DoDI) 4715.23 (DoD 2016) establishes policy and prescribes procedures to implement waste management through waste prevention and recycling. The US Army Installation Management Commands (IMCOM) installations have limited resources and limited personnel to study which source reduction methods are optimal to reduce food waste given their unique mission requirements. This study identifies opportunities for optimization and management of solid waste across IMCOM installations. Recycling is not enough to significantly reduce the economic or environmental costs to the DoD. Army installations pay over $100 million annually in disposal fees. Source reduction is emphasized in regulations but not prioritized in process modifications or technology solutions. Additionally, food waste contributes to excessive global greenhouse gas emissions, which affect global warming and climate change. A multitiered approach is necessary, placing more emphasis on source reduction advances and initiatives.
  • Aquatic Ecosystem Restoration in the Texas Western Gulf Coast Plain / Lower Rio Grande Alluvial Floodplain Ecoregion: Resaca Boulevard Resaca Section 206—Vegetation Community Adaptive Management

    Abstract: As part of the US Army Corps of Engineers (USACE) Continuing Authorities Program (CAP), Section 206 projects focus on restoring aquatic habitats for the benefit of fish and other wildlife. From 2017–2021, USACE Engineer Research and Development Center–Environmental Laboratory researchers in the Aquatic Ecology and Invasive Species Branch (ERDC-EL EEA) at the Lewisville Aquatic Ecosystem Research Facility (LAERF) collaborated with USACE Galveston District, The Nature Conservancy, US Fish and Wildlife Service, National Park Service, and local nonfederal sponsors—Brownsville (Texas) Public Utility Board and the City of Brownsville—to study restoration methods on former, naturally cut-off, channels of the Lower Rio Grande River. These aquatic ecosystems, locally termed “resacas,” are home to endemic plants and animals and are thus an important natural resource of national interest. This technical report documents the planning, design, construction, monitoring, and adaptive management activities throughout the Resaca Boulevard Resaca Section 206 Aquatic Ecosystem Restoration project. Methods and results for invasive species management—primarily Brazilian peppertree (Schinus terebinthfolia)—and aquatic and riparian vegetation establishment in endemic Texas ebony resaca forest, subtropical Texas palmetto woodland, and Texas ebony/snake-eyes shrubland habitats are discussed.
  • Effects of Sedimentation on Three Hawaiian Coral Species under Laboratory Conditions

    Abstract: Sedimentation can occur near a dredge operation in pulses over days, and potentially impact coral reefs occurring in close proximity. To improve the ability to predict the effects of dredging on corals, the effects of sedimentation in two 18-day experiments were studied for three common coral species representing different morphologies. In a laboratory setting, coral fragments were exposed to four sedimentation concentrations dosed every four days ranging from 0 to 60 mg cm-2. Separate experiments were performed in series, once with fine grain sediment and repeated with a coarse grain sediment. A 30-day sediment free observation period followed each experiment. Coral responses were measured throughout the experiment and at the end of the 18-day exposure and 30-day sediment free observation period. Photosynthetic yield, lipid ratios, tissue color, tissue loss, growth, and sediment cover varied among the treatment groups. All coral species were minimally affected when sediment concentrations were at or below 6 mg cm-2. P. meandrina and P. lobata experienced the most sediment coverage and tissue loss when exposed to sediment concentrations >30 mg cm-2 for either sediment. M. capitata experienced no sediment coverage or tissue loss when exposed to either sediment, but a reduction in photosynthetic yield at 60 mg cm-2 fine grain sediment was observed. During the 30-day post-exposure sediment free observation period, P. meandrina tissue loss continued, P. lobata nearly completely regrew lost tissue, while M. capitata showed no lingering effects. This study improves the US Army Corps of Engineers (USACE) ability to estimate the impacts of dredging on coral reefs.
  • Unmanned Ground Vehicle (UGV) Full Coverage Planning with Negative Obstacles

    Abstract: We explored approaches that offer full coverage path planning while simultaneously avoiding negative obstacles. These approaches are specific to unmanned ground vehicles (UGVs), which need to constantly interact with a traversable ground surface. We tested multiple potential solutions in simulation, and the results are presented herein. Full coverage path planner (FCPP) approaches were evaluated based on their ability to discretize their paths, use waypoints effectively, and be easily integrated with our current robot platform. For negative obstacles, we explored approaches that will integrate with our current navigation stack. The preferred solution will allow for teleoperation, waypoint navigation, and full autonomy while avoiding positive and negative obstacles