Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Coastal and Hydraulics Laboratory (CHL)
Clear
  • Development and Testing of the FRAME Tool on a 200-Mile Reach of the Lower Mississippi River

    Abstract: Understanding the likely long-term evolution of the Lower Mississippi River (LMR) is a challenging mission for the US Army Corps of Engineers (USACE) that remains difficult for conventional river engineering models. A new type of model is currently in development, tasked with revealing uncertainty-bounded trends in sediment transport and channel morphology over annual, decadal, and centennial timescales. The Future River Analysis and Management Evaluation (FRAME) tool is being designed with river managers and planners in mind to provide exploratory insights into plausible river futures and their potential impacts. A unique attribute of the tool is its hybrid interfacing of traditional one-dimensional hydraulic and sediment transport modeling with geomorphic rules for characterizing the morphological response. This report documents the development of a FRAME test-bed model for a 200-mile reach of the Mississippi River upstream of Vicksburg, Mississippi. This testbed allowed development and testing of the prototype FRAME tool in a data-rich environment. This work identified proposed future developments to provide river managers and planners with a fully functional tool for delivering insights on long-term morphological response in river channels across a variety of spatial and temporal scales.
  • Sediment Transport and Morphological Response to Nearshore Nourishment Projects on Wave-Dominated Coasts

    Abstract: Nearshore nourishments are constructed for shoreline protection from waves, to provide sediment nourishment to the beach profile, and to beneficially use dredged sediment from navigation channel maintenance. However, it is poorly understood how placement morphology and depth influence nearshore processes operated on wave-dominated coasts. This study investigates the wave fields, sediment transport, and morphological response to three common nearshore nourishment shapes, nearshore berm (elongated bar), undulated nearshore berm, and small discrete mounds, with numerical experiments utilizing the Coastal Modeling System. The nourishments are placed in depths between 3 m and 7 m with a volume of approximately 100,000 m3 and between 400 m and 1000 m in alongshore length. Numerical experiments are carried out in three distinct coastal settings with representative wave climates and geomorphology. Simulation results indicate that shallower, more continuous berms attenuate the most wave energy, while deeper, more diffuse placements retain more sediment. Results from this study improve the understanding of nearshore nourishment shapes and can support decision makers identifying the most appropriate construction technique for future nearshore nourishment projects.
  • Pier Analysis Tool: User’s Manual

    Abstract: This report documents the development of a rapid structural load-capacity assessment capability for ship docking and offloading structures (i.e., piers) and automation of the assessment technique into a user-friendly personal computer–based tool referred to herein as the Pier Analysis Tool (PAT). This capability provides a quick first-cut assessment of the load-bearing capacity of pier structures in terms of maximum allowable ship mooring loads and allowable weights for typical commercial and military vehicles and equipment associated with military discharge operations. The report covers the technical basis for the structural analyses along with detailed computational examples. It also provides a detailed user guide for PAT.
  • Corps Shoaling Analysis Tool (CSAT) User Guide

    Abstract: The Corps Shoaling Analysis Tool (CSAT) is a suite of computational routines for evaluating shoaling rates in navigation channels maintained by the US Army Corps of Engineers (USACE). This is achieved using survey data from the eHydro enterprise hydrographic survey database. At the local scale, CSAT’s outputs are useful for understanding historical shoaling trends and identifying shoaling hotspots, while enterprise-level shoaling forecasts support Operations and Maintenance (O&M) planning over a 5-year time horizon. This user guide provides practical, step-by-step instructions for new CSAT users who wish to download, install, and run the tool. Later sections provide insight into CSAT’s advanced features while also describing the methods and assumptions that underlie the calculations.
  • Tools for Inlet Geomorphic Mapping: An Overview and Application at East Pass, Florida and Fire Island Inlet, New York

    Abstract: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to highlight emerging tools for inlet geomorphic mapping and describe the workflows used to implement the tools. The Coastal Inlets Research Program (CIRP) maintains the US Coastal Inlets Atlas, which houses technical information (e.g., physical processes, navigation channel position, federal authorization for management purposes) on tidal inlets. Future expansion of the Atlas should include ready-made products that address a call from coastal inlet managers and practitioners to map inlet geomorphic change and features more accurately. The methods and workflows demonstrated in this document represent the first step towards expanding the US Coastal Inlets Atlas.
  • Review of Mississippi River Sediment-Sampling Protocols

    Abstract: The Mississippi River sediment data protocols located in the US Army Corps of Engineer (USACE), St Louis, Memphis, Vicksburg, and New Orleans Districts, were reviewed and evaluated. The review included both USACE and US Geological Survey (USGS) sampling sites. The purpose of this review was to evaluate the reported historical sediment data and to provide guidance for moving forward with an accurate and consistent sediment data collection program. The review was focused on the reliability of the reported historical data and its usefulness for use in sedimentation studies related to long-term aggradation, degradation, and dredging. Recommendations to implement effective sediment data collection, laboratory analyses, and reporting were provided.
  • LaGrange Lock and Dam, Illinois River: Navigation Approach Physical Model

    Abstract: A physical model study of the LaGrange Lock and Dam was conducted to optimize the navigation conditions for the new landside lock chamber design developed by the US Army Corps of Engineers–Rock Island District, Inland Navigation Design Center, and Stanley Consultants. A 1:120 Froude scale model was built to evaluate the navigation conditions for tows entering and exiting the upper and lower approaches. The final design consisted of a new 1,200 ft lock chamber located landward of the existing chamber. Data were collected to evaluate tow tracks and current direction and velocity information. Satisfactory navigation conditions were developed, and details are shown in the results section of this report.
  • Collaborative Development of Natural and Nature-Based Solutions for Coastal Resiliency in the Arctic and Adjacent Regions: A Workshop

    The workshop “Collaborative Development of Natural and Nature-Based Solutions for Coastal Resiliency in the Arctic and Adjacent Regions” was held in Reston, Virginia, October 24–25, 2023. The objective was to assemble diverse international partners in a hybrid in-person and virtual setting to focus on the viability of applying Nature-Based Solutions (NBS) to solve engineering challenges in the Arctic and similar cold region locations. The goals of the two-day workshop were to share recent efforts implementing NBS to mitigate coastal hazards such as flooding and erosion in northern high latitude settings and identify requirements and develop a robust program of activities to advance this work at national, regional, and local levels. This workshop report documents the presentations and discussion and summarizes key needs and recommendations for future engagement identified by speakers and workshop participants.
  • Norfolk Harbor Navigation Improvements Project: Modeling of Dredged Material Placement Schemes and Long-Term Sediment Transport at the Dam Neck Ocean Disposal Site

    Abstract: US Army Corps of Engineers–Norfolk District requested assistance with the development and evaluation of dredged-material-placement schemes that evenly distribute placed material and avoid or minimize unacceptable mounding in accordance with the site management and monitoring plan. A multiple placement fate and transport modeling study was conducted to determine the optimal placement plan for dredged material from Thimble Shoals Channel and Atlantic Ocean Channel at the Dam Neck Ocean Disposal Site (DNODS). Provided the large volume of dredged material to be placed at DNODS over a short duration during the construction period, a modeling study was performed using the Geophysical Scale Multi-Block (GSMB) modeling system to determine the transport and fate of placed dredged material at the DNODS that is resuspended by currents and waves over a 2-year period. Six scenarios were undertaken to determine the best path forward. Scenarios 1 and 4 were excluded due to high exceedance of the depth threshold. Scenarios 2, 3, 5, and 6 yielded an approximate 1%–2% dispersal of placed materials from the DNODS during ambient environmental conditions; Scenario 6 yielded the least. Most dispersion occurred during two simulated hurricanes. The model findings generally support the DNODS Environmental Impact Statement and site-designation documents.
  • Low-Sill Control Structure: Physical Modeling Investigation—Potential Upstream Dike Fields

    Abstract: The model investigation reported herein describes the process to analyze the effects of proposed dikes in various locations upstream of the Low-Sill Control Structure (LSCS) using an existing 1:55 Froude-scaled physical model. The purpose of this effort was to utilize the physical model to explore potential configurations of river-training structures in the approach channel that would result in more uniform flow conditions at the structure. This analysis was conducted by constructing dikes out of both sandbags and rock. Each dike configuration was surveyed using lidar and then tested by collecting particle-tracking velocimetry data. A total of nine dike configurations were tested in the physical model, and the resulting flow fields in the approach channel were provided to the US Army Corps of Engineers, Mississippi Valley Division. Most configurations resulted in data that showed improved, straighter flow paths in the approach channel. The results of these tests indicated that an L-head dike configured as the 50 ft stone dike 1-23A provided relatively straight flow conditions approaching the LSCS with relative uniform velocities across the channel.