Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Coastal and Hydraulics Laboratory (CHL)
  • Automatic Identification System Analysis Package User Guide

    Abstract: The Automatic Identification System Analysis Package (AISAP) enables acquisition, statistical analysis, and visualization of Automatic Identification System (AIS) data from historic vessel position reports. The web-based AISAP software allows the users to choose which data they want to examine for a specific geographic area, time period, and vessel type(s). Built-in features provide vessel characteristics, arrival and departure information within a geofenced area, vessel travel time between two locations, vessel track line plots, and relative density plots of AIS data reports. AISAP accesses the Nationwide Automatic Identification System database hosted by the United States Coast Guard. This user manual provides training exercises for users to follow to familiarize themselves with AISAP procedures and workflows. These training exercises also provide examples of AISAP products.
  • Baseline Data for a Cedar Tree Revetment Monitoring Site near Wichita, Kansas

    Purpose: This US Army Corps of Engineers (USACE) National Regional Sediment Management technical note (RSM-TN) documents baseline data collected at a cedar tree revetment installation on a small creek near Wichita, KS. These data can be used in subsequent years to add to the understanding of the longevity, effectiveness, and failure modes of cedar tree revetments as bank stabilization.
  • USACE Navigation Sediment Placement: An RSM Program Database (1998 – 2019)

    Abstract: This US Army Corps of Engineers, Regional Sediment Management, technical note describes a geodatabase of federal coastal and inland navigation projects developed to determine the extent to which RSM goals have been implemented across the USACE at the project and district levels. The effort 1) quantified the volume of sediment dredged from federal navigation channels by both contract and USACE-owned dredges and 2) identified the placement type and whether sediment was placed beneficially. The majority of the dredging data used to populate the geodatabase were based on the USACE Dredging Information System DIS database, but when available, the geodatabase was expanded to include more detailed USACE district-specific data that were not included in the DIS database. Two datasets were developed in this study: the National Dataset and the District-Specific and Quality-Checked Dataset. The National Dataset is based on statistics extracted from the combined DIS Contract and Government Plant data. This database is a largely unedited database that combined two available USACE datasets. Due to varying degrees of data completeness in these two datasets, this study undertook a data refinement process to improve the information. This was done through interviews with the districts, literature search, and the inclusion of additional district-specific data provided by individual districts that often represent more detailed information on dredging activities. The District-Specific and Quality-Checked Database represents a customized database generated by this study. An interactive web-based tool was developed that accesses both datasets and displays them on a national map that can be viewed at the district or project scale
  • National Sediment Placement Data Viewer Users Guide

    Purpose: This US Army Corps of Engineers (USACE) Regional Sediment Management (RSM) technical note serves as a user’s guide for the RSM National Sediment Placement Data Viewer. This application was created utilizing over 20 yr* of detailed and verified USACE dredging data, giving users an interactive web-based tool that takes these datasets and displays them on a national map, viewable at the district or project scale. The Data Viewer will quantify the total cubic yards dredged, disposed, and/or beneficially used based on the user selected parameters. Detailed information on the datasets utilized and the verification processes followed to create this application can be found in ERDC/TN RSM-22-4, USACE Navigation Sediment Placement: An RSM Program Database (1998 – 2019) (Elko et al. 2022). This technical note attempts to define each of the inputs/outputs given from the Data Viewer and then provide a step-by-step example of utilizing the Data Viewer, accessed here:
  • Techniques for Developing Bars and Islands in Incising Channels

    Abstract: Sandbars and islands provide important nesting and foraging habitat for birds (including listed species) and shallow water habitat for many aquatic species in riverine ecosystems. In-stream habitat is especially important in incised channels lacking floodplain connectivity, with channel bars providing important riparian habitat. However, some river management practices significantly alter and sometime eventually eliminate these important habitats. Several US Army Corps of Engineers districts are planning or actively building instream bars and islands using flow management and/or instream structures. Sister agencies (e.g., US Bureau of Reclamation) have similar initiatives downstream of their reservoir structures. This report outlines considerations for establishing and managing sandbar and island features. It presents a compilation of proven techniques for promoting sandbar and island development and for reducing erosion of these features.
  • Tar-Pamlico and Neuse River Basins, North Carolina, Geomorphic Summary Report

    Abstract: The Tar-Pamlico and Neuse River Basins are neighboring basins in eastern North Carolina, both originating in the piedmont physiographic region, transitioning to coastal plains, and emptying into Pamlico Sound. The Pittsburgh District is responsible for the continued efforts to assist local sponsors with managing these basins and submitted a Water Operations Technical Support (WOTS) request. The WOTS program, funded by Headquarters, US Army Corps of Engineers, provides funding for the Coastal and Hydraulics Laboratory (CHL) to provide technical assistance to develop innovative solutions to water resource problems. The objectives of this study are to identify flood risk management alternatives to address the accumulation of woody debris in the channel systems. CHL compiled existing conditions information and researched current and potential new methods for managing woody debris to provide a comprehensive list of recommendations. The results and recommendations are provided in this document.
  • Development of a Two-Dimensional HEC-RAS Sediment Model for the Chippewa River, Wisconsin, for Software Development and Sediment Trend Analysis

    Abstract: This US Army Corps of Engineers (USACE) Regional Sediment Management technical note (RSM-TN) describes an RSM effort that converted a one-dimensional (1D) sediment transport model of the Chippewa River confluence with the Mississippi River into a two-dimensional (2D) model. This work leveraged recent sediment data collection and tested the new 2D sediment transport capabilities in the Hydrologic Engineering Center, River Analysis System (HEC-RAS) Version 6.0. In addition to the benefits of software testing, the resulting model developed through this effort can provide more accurate spatial and temporal information about sedimentation in the Mississippi River navigation channel and help inform future dredging strategies for the St. Paul District, USACE.
  • Foundational Principles in the Development of AdH-SW3, the Three-Dimensional Shallow Water Hydrodynamics and Transport Module within the Adaptive Hydraulics/Hydrology Model

    Abstract: This report details the design and development of the three-dimensional shallow water hydrodynamics formulation within the Adaptive Hydraulics/Hydrology model (AdH-SW3) for simulation of flow and transport in rivers, estuaries, reservoirs, and other similar hydrologic environments. The report is intended to communicate principles of the model design for the interested and diligent user. The design relies upon several layers of consistency to produce a stable, accurate, and conservative model. The mesh design can handle rapid changes in bathymetry (e.g., steep-sided navigation channels in estuaries) and maintain accuracy in density-driven transport phenomena (e.g., thermal, or saline stratification and intrusion of salinity).
  • Inland Waterway Network Mapping of AIS Data for Freight Transportation Planning

    Abstract: Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84·0% accuracy in detecting stops at ports and 83·5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.
  • Improving Container Shipment Analysis

    Abstract: US Army Corps of Engineers (USACE) deep-draft navigation economic analyses use assumptions about the sensitivity of vessel operations to channel modification to estimate national economic development benefits. The complexity and proprietary nature of carrier deployment decisions and loading practices adds uncertainty to USACE navigation studies. This report attempts to provide an overview of containership deployment and loading practices as it relates to USACE navigation studies to improve the quality of deep-draft economics. The report relies on trade data, vessel order books, and carrier interviews to study the impact of channel modification on vessel loading and deployment. The report makes recommendations for developing deployment and loading inputs for future economic evaluations.