Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Coastal and Hydraulics Laboratory (CHL)
Clear
  • Integrating NOAA’s National Water Model (NWM) into the Antecedent Precipitation Tool (APT) to Support Clean Water Act Decision-Making

    Abstract: This study examines the effectiveness of the National Water Model (NWM) in assessing streamflow normalcy under the Clean Water Act, compared to the commonly used Antecedent Precipitation Tool (APT). The APT, used by the Environmental Protection Agency, US Army Corps of Engineers, and environmental consultants, evaluates waterbody conditions based on precipitation data. However, it was found to be less accurate in predicting streamflow normalcy compared to USGS gage data. The NWM, on the other hand, showed promising results in preliminary analyses, outperforming the APT when compared to USGS gage records. This research expands on these initial findings, evaluating the NWM’s performance across the contiguous United States (CONUS) at gage locations indexed to the NHDPlus Version 2.1 stream network. The results suggest that the NWM provides adequate performance for assessing streamflow normalcy where USGS gages are not present, with accuracy ranging from 40% to 60% in the western half of CONUS and 60% to 80% in the eastern half.
  • FUNWAVE-TVD Testbed: Analytical, Laboratory, and Field Cases for Validation and Verification of the Phase-Resolving Nearshore Boussinesq-Type Numerical Wave Model

    Abstract: Over the last couple of decades, advancements in high-performance computing have allowed phase-resolving, Boussinesq-type numerical wave models to be more practical in addressing nearshore coastal wave processes. As such, the open-source FUNWAVE-TVD numerical wave model has become more ubiquitous across all scientific and engineering-focused R&D organizations, including academic, government, and industry partners. In collaboration with the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory; the University of Delaware; and HR Wallingford, a robust testbed has been developed to allow users to benchmark their applications against new releases of the model. The testbed presented here includes analytical, laboratory, and field cases, to provide guidance on the operational utility of FUNWAVE-TVD and examines numerical convergence, accuracy, and performance in modeling wave generation, propagation, wave breaking, and moving shorelines in nearshore wind-wave applications. A brief discussion on the efficiency of the model across parallel computing platforms is also provided.
  • Application of Existing Tools to Systematically Identify Nearshore Placement Sites for Beneficial Use of Navigation Sediments in Lake Michigan

    Purpose: The Great Lakes includes 140 federally maintained harbors with an annual dredging program of 2–4 million cubic meters (3–5 million cubic yards)[1] of sediment. Many small harbors are not dredged regularly, and there is an undredged backlog of over 9 million cubic meters (12 million cubic yards) of sediment (USACE-LRD 2021). Current policy (Spellmon 2023) is to maximize the beneficial use (BU) of sediment, with a goal of beneficially reusing 70% of the federal navigation dredging volume by 2030 (that is, the 70/30 goal). In the Great Lakes, clean sands have often been placed on beaches or in the nearshore littoral zone to beneficially nourish the shoreline, but since many harbors are not dredged regularly, no plans exist to beneficially reuse dredged sediments. This lack of existing BU plans is particularly true for harbors with finer grained or mixed sediment. To achieve the 70/30 BU goal and support navigation maintenance and coastal management requires a strategic and systematic approach to identifying BU sites. The purpose of the technical note is to (1) provide an approach to identify potential nearshore placement sites using existing information and models; (2) describe available tools for placement site identification, coastal condition information, and the long-term fate of the sediment; and (3) provide a pertinent case study to describe this approach in practice.
  • Traveling Kevel Load Analysis for Inland Locks, Phase I: Previous Failures

    Abstract: The US Army Engineer Research and Development Center (ERDC) has begun an investigation of the load conditions experienced by a traveling kevel when moored to a moving barge train. These traveling kevel systems are essential for the safe and efficient use of the US Army Corps of Engineers (USACE) navigation lock inventory. This work is being conducted as part of the Navigation Systems Research Program of the Coastal and Hydraulics Laboratory (CHL). Recent failures of traveling kevels suggest that the existing design guidance for design loads for traveling kevels may need updating. This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the pertinent background information and the current issues related to previous traveling kevel failures.
  • Tools and Technical Guidelines for Delineating the Extent of Tidal Waters: Proof of Concept

    Abstract: The delineation of shorelines in tidally influenced waters, as well as the inland extent of tidal influence of those waters, is often used to define the extent of federal and/or state jurisdictional boundaries, including the US Army Corps of Engineers’ (USACE) limits of jurisdiction under the Rivers and Harbors Act of 1899 (RHA) and Section 404 of the Clean Water Act. At present, USACE and other practitioners use a variety of field observations and desktop-based data sets, tools, and techniques to identify and delineate the lateral and longitudinal extent of USACE’s jurisdiction under the RHA for tidally influenced waters. Tidal waters, and thus federal jurisdiction under the RHA, “end where the rise and fall of the water surface can no longer be practically measured in a predictable rhythm.” However, the technical standards, definitions, and data to delineate tidal extent are also lacking. The uncertainty and ambiguity in what constitute tidal extent increases litigation risk and decreases repeatability and technical defensibility of USACE decisions. Nationally applicable technical guidance and rapid tools and techniques are needed to increase defensibility and consistency across all coastal USACE districts while also accelerating USACE Regulatory decision-making.
  • Analysis of Beach Cusp Formation and Evolution Using High-Frequency 3D Lidar Scans

    Abstract: Beach cusp characteristics were explored using 15 months of 3D lidar scans collected hourly at the Duck, NC, Field Research Facility. Fourier analyses performed on lidar-derived beach elevation contours generated spatial cusp spectra. Active cusp events identified from the location and magnitude of each spectrum’s peak were used to evaluate conditions during cusp formation and evolution. Cusps primarily developed during normally-incident, long-period, low-energy wave conditions with low frequency spread and reflective beach conditions. Often, however, persistent upper-beach cusps lasted days to months and dynamic lower-beach cusps evolved over individual tidal cycles. At times, beaches exhibiting multiple cusp systems reverted to a single cusp system extending the entire beach when the high-tide waterline reached the upper-beach cusps, with the location and spacing of the resulting lower-beach cusps controlled by the upper-beach cusps. This is consistent with a “morphological coupling” hypothesis that hydrodynamic-morphodynamic feedbacks between the swash and upper-beach cusps can form lower-beach cusps with a related wavelength as the tide falls. However, sometimes the high-tide waterline reaching the upper-beach cusps did not result in a unified beach state. This suggest that morphological coupling is often an important factor in controlling the development of new lower-beach cusps but cannot initiate cusp formation in hydrodynamic conditions outside those favorable for cusp activity.
  • Rectifying and Stabilizing Planet SkySat Video Collects for Bathymetric Inversions from Space

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) presents the development of a workflow to process Planet SkySat videos collected from space at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to derive wave kinematics and perform bathymetric inversions. The document summarizes the nine 30–60 s* satellite video collections, demonstrates the accuracy of an automated rectification and stabilization workflow, and applies a new short-dwell version of a common inversion algorithm (cBathy) to demonstrate the utility of short-dwell videos from space providing an initial out-of-the-box assessment of errors for one of the collections, and recommends future avenues of research for improving bathymetric predictions.
  • Evaluation of the Version 1 Advanced Tactical Awareness Kit–Expeditionary Radar (ATAK-ER V1) for Accuracy and Reliability in Surf-Zone Characterization in a Range of Environmental Conditions

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) presents the evaluation of a rapidly deployable radar and associated software for characterizing surf-zone waves, currents, and bathymetries at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina. This project was conducted at the request of the US Marine Corps (USMC) Warfighting Laboratory. The Version 1 Advanced Tactical Awareness Kit–Radar Expeditionary (ATAK-ER V1) system was deployed 15 times between July and August 2023 to observe a range of wave, water level, and wind conditions that could each affect radar processing. Products from the system were then compared to the FRF’s continuously operating in situ instruments and monthly bathymetric surveys to quantify the accuracy and reliability of the output. A number of issues with the unit are identified, including potential error sources contributing to inaccuracies, but the black-box nature of the commercial off-the-shelf (COTS) unit prevents a confident understanding of why wave heights are underpredicted (by 65% on average), why bathymetries consistently have root-mean-square errors (RMSE) over 1 m with progressively greater errors with distance offshore, or why some collections are unable to generate all of the advertised products. This Version 1 COTS unit is not recommended for operational use at this time.
  • Sharing Ships’ Weather Data via AIS: Concept and Results from Multiyear Observations

    Abstract: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to discuss the concept, demonstrations, and the initial results of multiyear proof-of-concept testing of the capability to share weather data from ships via the Automatic Identification System (AIS). Technical foundations of this process were described by Tetreault and Johnson (2020) with partial results described in Johnston et al. 2021. The updated results in this CHETN include evaluation of the efficacy of the various application-specific message (ASM) formats use to communicate the weather observations and data reception results for selected vessels that have been participating in the proof-of-concept field deployment since 2019 or later.
  • Mississippi River AdH Model Modification and Evaluation, Thebes, Illinois, to Birds Point, Missouri, Reach

    Abstract: A calibrated hydrodynamic and sediment transport model of the Upper Mississippi River, from Thebes, Illinois, to Birds Point, Missouri, was created to investigate hydraulics and sediment transport in the river channel and across the Dogtooth Island Peninsula (DIP) as the result of the Len Small levee breach. A hydrodynamic model was developed for the reach and calibrated to stage and breach outflow discharge data for the floods of 2011, 2015–2016, and 2017. The hydrodynamic model was used to investigate breach outflow discharges and shear stress distribution over the DIP. Soil and geologic maps were investigated to determine soil parameters and the long-term stability of soil formations on the DIP. The Upper Mississippi River sediment transport model was built upon the hydrodynamic model and soil mapping efforts. The sediment transport model was calibrated to the 2015 and 2017 flood events. Calibration data were limited to changes in elevation, which were then areally averaged, computed from comprehensive channel surveys and lidar data for the DIP. This model provides a solid foundation for comparing alternative measures to minimize further erosion of the DIP and for analyzing the risk of a channel cutoff occurring.