Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Coastal and Hydraulics Laboratory (CHL)
  • Applicability of CoastSnap, a Crowd-Sourced Coastal Monitoring Approach for US Army Corps of Engineers District Use

    Abstract: This US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, technical report details the pilot deployment, accuracy evaluation, and best practices of the citizen-science, coastal-image monitoring program CoastSnap. Despite the need for regular observational data, many coastlines are monitored infrequently due to cost and personnel, and this cell phone-image-based approach represents a new potential data source to districts in addition to providing an outreach opportunity for the public. Requiring minimal hardware and signage, the system is simple to install but requires user-image processing. Analysis shows the CoastSnap-derived shorelines compare well to real-time kinematic and lidar-derived shorelines during low-to-moderate wave conditions (root mean square errors [RMSEs] <10 m). During high-wave conditions, errors are higher (RMSE up to 18 m) but are improved when incorporating wave run-up. Beyond shoreline quantification, images provide other qualitative information such as storm-impact characteristics and timing of the formation of beach scarps. Ultimately, the citizen-science tool is a viable low-cost option to districts for monitoring shorelines and tracking the evolution of coastal projects such as beach nourishments.
  • Proceedings from the US Army Corps of Engineers (USACE) 2021 Beneficial Use of Dredged Material Virtual Workshop

    Abstract: On 13–15 July 2021, 58 representatives from Headquarters, US Army Corps of Engineers (USACE), 2 USACE Divisions, 14 USACE districts, and US Army Engineer Research and Development Center’s (ERDC) Environmental (EL) and Coastal Hydraulics (CHL) Laboratories came together and participated in a virtual workshop on the beneficial use (BU) of dredged material. The overall goal was to organize the BU community across USACE and develop a path forward to increase BU practices. Talks and discussions focused on the current status of BU across USACE, including success stories on innovative BU projects, challenges related to regulatory issues, state and federal policies, technical logistics, and stakeholder engagement, as well opportunities for expanding current practices to include more regular and innovative applications. The workshop was cohosted by Dr. Amanda Tritinger (CHL) and Dr. Kelsey Fall (CHL) on behalf of the Engineering With Nature®, Coastal Inlets Research Program, Dredging Operations and Environmental Research, and Regional Sediment Management research programs. The workshop concluded by introducing and awarding the first annual Timothy L. Welp Award for Advancing Beneficial Use of Dredged Sediments to recognize teams (with members across and outside of USACE) that have advanced progress on BU through collaboration, partnering, and innovation.
  • Houston Ship Channel Numerical Model Update and Validation

    Abstract: The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Corps of Engineers, Galveston District (SWG), requested the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, update and revalidate a previously developed three-dimensional Adaptive Hydraulics (AdH) hydrodynamic and sediment model of the HSC, Galveston, and Trinity Bays. The model is necessary for analyzing potential impacts on salinity, sediment, and hydrodynamics due to alternatives designed to reduce shoaling in the HSC. SWG requested an updated validation of the previously developed AdH model of this area to calendar years 2010 and 2017, utilizing newly collected sediment data. Updated model inputs were supplied for riverine suspended sediment loads as well as for the ocean tidal boundary condition. The updated model shows good agreement to field data in most conditions but also indicates potential issues with freshwater flow inputs as well as the ocean salinity boundary condition.
  • 3D Measurements of Water Surface Elevation Using a Flash Lidar Camera

    Abstract: This Coastal and Hydraulics Engineering technical note (CHETN) presents preliminary results from a series of tests conducted at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to explore the capabilities and limitations of the GSFL16K Flash Lidar Camera in nearshore science and engineering applications. The document summarizes the spatial coverage and density of data collected in three deployment scenarios and with a range of tuning parameters and provides guidance for future deployments and data-collection efforts.
  • Measuring Maritime Connectivity to Puerto Rico and the Virgin Islands Using Automatic Identification System (AIS) Data

    Abstract: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to summarize a portion of recently published work (Young, Kress, et al. 2022) that used archival Automatic Identification System (AIS) data to measure the commercial vessel traffic connected to Puerto Rican and US Virgin Island (USVI) port areas from January 2015 to June 2020. Vessel movement derived from AIS was aggregated to construct a network that measured the port-to-port connectivity for all ports in the network and the interconnectivity of traffic between those ports. AIS data provided a description of vessel movement and the identification of specific vessel classes. Metrics such as interconnectedness can be used in conjunction with standard US Army Corps of Engineers (USACE) metrics describing waterway utilization, which traditionally have included total tonnage and specific commodity tonnage. The ability to consider the self-selected vessel-type broadcast via AIS, as well as dominant commodity type and tonnage reported through statistical publications, provides a fuller and more accurate description of waterway capacity utilization. This knowledge, along with port-to-port interconnectedness, reveals potential redundancies between ports, robustness across supply chains, and the impacts of seasonality, thereby allowing the USACE to expand its understanding of maritime supply-chain resilience.
  • Geomorphic Metrics Used in FluvialGeomorph

    Abstract: FluvialGeomorph (FG) is a geographic information system-based geomorphic analysis toolkit that analyzes high-resolution terrain data to provide river-reach assessments for watershed studies. This report demonstrates the utility of FG to identify physical stream channel characteristics that are used to determine channel stability. The FG toolbox is a remote-sensing approach based on lidar data, designed to measure channel, floodplain, valley, and watershed metrics necessary for watershed assessments. Currently, channel slope and cross-sectional analysis and planform metrics are being evaluated with existing lidar data from different hydrophysiographic regions within the United States. Recent study areas include the Northwest, Southwest, South, Midwest, and upper Midwest of the United States.
  • Sensitivity of Simulated Flaw-Height Estimates to Phased Array Scan Parameters

    Abstract: Phased array ultrasonic testing (PAUT) is a nondestructive testing (NDT) technique for detecting and sizing flaws in welds. Estimates of flaw size are sensitive to a variety of PAUT scan parameters. In this study, estimates of flaw height are simulated using computer software. The sensitivity of these estimates to selected PAUT scan parameters is analyzed to identify those that have the greatest influence on estimates of flaw height. Understanding how varying different parameters within a phased array instrument affects the accuracy of flaw-height estimates helps to validate PAUT scan procedures and improve flaw-height estimates. For this research, a series of permutations on selected flaws were performed to see how certain parameters affect the accuracy in sizing flaw height. In addition, an analysis on how beam spread leads to flaw sizing inaccuracies was also conducted as part of this work.
  • Evaluation of Structural and Operational Alternatives to Optimize the Distribution of Water and Sediment in the Passes of the Mississippi River

    Abstract: Mississippi River shoaling and dredging processes in the vicinity of Head of Passes and in Southwest Pass were investigated. Existing rates of deposition and dredging were determined using near-daily eHydro bathymetric surveys, National Dredging Quality Management dredge operating data, and geospatial processing steps developed for this study. These surveys provide a means to characterize the highly dynamic and variable sedimentation patterns observed in the navigation channel. The HEC-6T one-dimensional numerical sedimentation model was used to evaluate possible modifications to the distribution of water and sediment in the Mississippi River near Head of Passes in an attempt to reduce shoaling in the navigation channel. The model was used to evaluate the effects of partial closures of several distributaries downstream from Venice and to evaluate the effects of channel widening and channel deepening adjacent to the Hopper Dredge Disposal Area at Head of Passes. In this study, various structural alternatives were compared to a base test that represented existing conditions. Sedimentation and dredging effects were projected 50 years into the future.
  • Acoustic Doppler Current Profiler Study of Water and Sediment Movement through a Deep Scour Hole in the Lower Mississippi River

    Abstract: A series of acoustic Doppler current profiler (ADCP) transects were collected through a deep scour hole at the bend near River Mile 60 on the Lower Mississippi River. The measurements were collected during both a low and a high flow. The ADCP results show a 3D flow field through the deep bend. The backscatter intensity of the ADCP measurements indicates the majority of the sediment remains close to the inside of the bed and high in the water column, with minimal concentrations at the bottom of the bend. These findings have implications for numerical sediment transport models, which tend to deposit material at the bottom of deep scour holes like the one in this study
  • Soil-Moisture Estimation of Root Zone through Vegetation-Index-Based Evapotranspiration-Fraction and Soil-Properties (SERVES) User’s Manual Version 1.0

    Purpose: The purpose of this user’s guide is to provide background methods and implementation guidance on the Soil-moisture Estimation of Root Zone through Vegetation-Index-Based Evapotranspiration-Fraction and Soil-Properties (SERVES) model (Pradhan 2019).