Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Coastal and Hydraulics Laboratory (CHL)
Clear
  • Wave Information Study ERA5 Wind-Field Evaluation

    Abstract: The Wave Information Study (WIS) provides continuous wave hindcasts along US coastlines, including the Great Lakes and US Territories. As wave modeling and wind-field technologies have advanced, WIS is now positioned to transition to the new long-term archived hindcast wind fields available from ERA5, the fifth-generation global atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts. Before adopting ERA5 operationally within the WIS hindcast, formal testing compared ERA5 wind-forced hindcasts to the existing WIS hindcasts using Nation Center for Atmospheric Research Reanalysis 1 (NCAR-R1) winds. Results were validated against collocated and concurrent point-source and altimeter-based wave measurements from 2015 to 2018. ERA5 showed a 53% improvement in significant wave-height bias in the Atlantic and 76%–77% improvements in the Pacific. While improvements in average wave period were less consistent, ERA5 still showed better correlation across all domains. Hawaii showed modest improvements, except for bias. ERA5 also outperformed NCAR-R1 in mean wave direction at peak frequency, with bias reductions of 5%–72%, most notably in Hawaii, where wave modeling is typically challenging. Overall, it was concluded that the ERA5 forced WIS estimates were more accurate than the NCAR forced WIS estimates, supporting the operational transition of WIS to ERA5.
  • Major Freight Corridors in the US: Mapping of Commodity Flows on Waterborne, Rail, and Truck Networks

    Abstract: Within the context of complex, interconnected, multimodal transportation, the US Army Corps of Engineers (USACE) provides safe, reliable, efficient, effective, and environmentally sustainable waterborne transportation systems for the movement of commerce, national security needs, and recreation. Understanding the role of waterways within the multimodal transportation system would allow for comprehensive resource allocation, including dredging prioritization. In 2022, approximately 19,810 million tons of goods were transported within, to, and from the US, with truck being the dominant mode for the domestic portion of the trip (64 percent). Relatively recent legislation calls for a multimodal representation of freight, one that facilitates transportation planning and asset management. However, traditional data collection and analysis has focused on single modes, preventing nationwide, multimodal representations of commodity flows. This report presents major commodity corridors within, to, and from the US by combining diverse sources and homogenizing data dimensions. The resulting information and commodity-specific maps help to contextualize waterborne navigation’s role within the broader multimodal transportation system. A key finding from the study indicates that the mouth of the Mississippi River in Louisiana carried in 2019 more volume of freight annually than any other waterway, railroad, or highway segment in the US.
  • Design of River Training Structures Using Isogeomorphic Constraints

    Abstract: Prepared for the Mississippi River Geomorphology and Potamology program of the United States Army Corps of Engineers (USACE), through the Coastal and Hydraulics Laboratory (CHL), this report introduces the concept of river control structure design using isogeomorphic constraints. The report defines isogeomorphic design methodology and demonstrates the application of the methodology using both analytic and numerical examples. The examples investigated herein are idealized, and application to real-world conditions (such as a dike-field) would be far more complex than what is demonstrated herein. This report merely serves as an introduction to a novel design paradigm that future studies can further investigate and refine with the ultimate objective of developing improved design guidance for USACE.
  • A Qualitative Comparison Review Between Commonly Used Boussinesq Models

    Abstract: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to summarize the Boussinesq models FUNWAVE, Coulwave, and Celeris. This CHETN outlines the governing equations and numerical schemes for each model and presents the order of their error terms. A qualitative comparison was completed between the fully nonlinear models, FUNWAVE and Coulwave, and the weakly nonlinear model, Celeris. Results from this comparison demonstrate capabilities for each model by comparing previously published benchmark validation cases. The discussion section highlights additional areas of research and report recommendations.
  • Evaluation of Vegetated Shoreline Capacity Using CSHORE-VEG

    Abstract: A versatile vegetation module has been implemented into the Cross-Shore model (CSHORE) to evaluate the capacity of coastal and marine wetlands with respect to wave-height attenuation and wave-runup reduction. This extended model, Cross-Shore-Vegetation (CSHORE-VEG), is capable of simulating the effects of rigid and flexible vegetation with spatially varying biomechanical properties. To accurately estimate the vegetation-induced energy dissipation rate, a drag coefficient formula that is independent of the vegetation flexibility was developed based on field data collected in salt marshes in Terrebonne Bay, Louisiana, during a tropical storm. This universal drag coefficient formula along with other existing drag coefficient formulas have been implemented into CSHORE-VEG to meet different needs. CSHORE-VEG has been validated against four independent datasets involving different vegetation properties for wave attenuation and mean water level change. After achieving good agreement in model-data comparisons, CSHORE-VEG was employed to quantify the capacity of two representative salt marshes composed of Spartina alterniflora and Elymus athericus for wave attenuation. As a result, two ineffective vegetated shoreline scenarios were identified. Furthermore, a procedure for determining the percentage of broken vegetation stems and modeling the corresponding wave-height reduction was applied to evaluate the wave-height reduction under realistic field conditions.
  • Spatial Analyses of Atmospheric Rivers in the Willamette River Basin of Oregon: Literature Review and Atmospheric River

    Abstract: This technical note summarizes the literature review and atmospheric river (AR) detection technique data collection and initial processing activities that were performed in preparation to spatially storm type (i.e., categorize) AR extreme storm events in Oregon’s Willamette River Basin (WRB). Storm typing is performed to develop a homogeneous extreme event dataset for precipitation-frequency analyses, whose products are used to support business line (e.g., Dam and Levee Safety and Flood Risk Management) activities of the US Army Corps of Engineers (USACE). Twenty-three Atmospheric River Tracking Method Intercomparison Project (ARTMIP) Tier 1 data catalogs were collected from the US National Science Foundation’s National Center for Atmospheric Research Climate Data Gateway (Rutz et al. 2019). Each catalog models the binary presence or absence of an AR on a gridded basis, globally, at a three-hour time step from 1980 to 2016. Any ARTMIP Tier 1 catalog could effectively be selected and applied to segment AR extreme storm events for a given area by intersecting it with a prescribed precipitation dataset. However, each catalog characterizes the presence or absence of ARs differently. Hence, there exists uncertainty regarding which ARTMIP Tier 1 catalogs to select for a given practical application. This technical note addresses the uncertainty associated with ARTMIP Tier 1 catalog choice by generalizing model selection (i.e., which ARTMIP Tier 1 methods to use). Monthly climatological AR frequency was calculated throughout the WRB for each of the 23 ARTMIP Tier 1 data catalogs. Thirteen of the AR identification and tracking methods that together consistently calculated climatological AR frequency throughout the WRB were selected to form an ensemble subset. The 13-member ensemble could be used to develop AR storm type (Ralph et al. 2019) annual and seasonal maxima datasets to compute areal-precipitation-frequency estimates for the contributing drainage areas of dams in the WRB that are operated and maintained by USACE.
  • Physical Modeling of Filling and Emptying (F&E) Systems of Proposed 1,200 ft Chambers at Locks 22 and 25: Hydraulic Model Investigation

    Abstract: The US Army Corps of Engineers (USACE) is considering navigation improvements for several projects to meet predicted increases in tow traffic at the Lock and Dam 22 and Lock and Dam 25 sites in the Mississippi river. Some of these improvements include the addition or replacement of the navigation lock at the site. The following document contains the laboratory model investigations of the lock filling and emptying (F&E) system for additions at the sites. This report provides the results of research testing under the Navigation and Ecosystem Sustainability Program (NESP). The design guidance includes culvert geometry, port size, location, and spacing. Guidance for the lock chamber performance, based on acceptable filling and emptying operations is also included. The results show that the original design is a feasible design based on the hydraulic performance of the system as a result of the experimental tests. Further discussions with the St. Louis District (CEMVS) arrived at a new culvert to port transition design that was more in line with the existing geometry at Lock and Dam 25. The new design and port spacing configuration were agreed by CEMVS and ERDC to not have significant impact on hawser forces or the overall chamber performance.
  • Hydraulic Evaluation of the Proposed Brandon Road Lock Flushing System

    Abstract: The Great Lakes Mississippi River Interbasin Study is a US Army Corps of Engineers effort focused on stopping the migration of aquatic nuisance species (ANS) from the Mississippi River to the Great Lakes. Brandon Road Lock and Dam (BRLD) has been chosen as the location to stop this northward migration. The study described in this report focuses on the performance of a proposed lock flushing system intended to reduce the risk of ANS from passing northward through BRLD. This system is a modification of the existing filling/emptying (F/E) system and must perform as both a lock flushing system and the F/E system. This study focuses on determining the performance of the flushing system and the F/E system to establish flushing and F/E operating parameters for safe lock operation. The results presented include qualitative descriptions and quantitative measurements of the flushing and F/E systems’ hydraulic performance. Finally, this study investigates commercial barge tows entering and exiting the lock chamber to determine the effects such barge tow movement has on both the barge tow and the vessel-generated currents. This report provides recommendations for flushing system and F/E system operation and commercial barge traffic considerations during flushing.
  • Northeast Florida Regional Sediment Management: A Guide to Using Dredged Material for Estuarine Restoration

    Abstract: Regional sediment management is a systems approach using best management practices for more efficient and effective use of sediments in coastal, estuarine, and inland environments. The primary RSM objective for this Northeast Florida study is to determine what opportunities exist to beneficially use dredged material for ecosystem restoration and habitat enhancement. A secondary objective is to ensure more efficient use of federal funds by coordinating dredging schedules for navigation projects with federal, state, and local authorities. This study met these objectives through collaboration with stakeholders on the technical, social, and cultural components required to combine resources to meet common goals. The Federal Standard for navigation projects in Northeast Florida is either upland disposal or disposal at the Jacksonville Ocean Dredged Material Disposal Site. This document describes five beneficial uses of dredged material: (1) thin-layer placement, (2) island creation and restoration, (3) dredged hole filling, (4) shoreline stabilization, and (5) upland beneficial use. Dredged material from navigation projects throughout Northeast Florida was considered, including Fernandina Harbor, Kings Bay Naval Submarine Base, Jacksonville Harbor, St. Augustine Inlet, Ponce De Leon Inlet, and the Atlantic Intracoastal Waterway. For each placement strategy, the document outlines the required sediments, volumes, construction methodologies, and estimated costs.
  • An Investigation into the Correlation Between Selected Coastal Protection Indices and Percent Residual Dune and Berm Volumes Following Coastal Storms

    Abstract: Morphometric indices describe the dimensions of a dune and berm profile and can serve as relative metrics of coastal protection. However, coastal vulnerability to storm damage also depends on storm, wave, sediment, and offshore characteristics. Recently, more elaborate non-morphometric indices have been proposed in an effort to account for these other factors. This study compares the correlation between these morphometric and non-morphometric indices and one measure of coastal protection, the ability of a dune and berm profile to resist storm-induced changes in volume. This study uses a numerical-simulation approach rather than an empirical approach because a sufficiently comprehensive set of observational data does not exist. A randomized sample of dune and berm profiles were generated at eight coastal locations. Using the cross-shore numerical model (CSHORE), storm-induced changes in dune and berm volume were simulated for storms of low to moderate severity. The correlation between the various prestorm indices and the percentage of prestorm dune and berm volume remaining after the storm was calculated at each location. Results show that no single index always exhibits a higher correlation with percent dune and berm volume remaining. However, some indices were far more likely than others to produce higher correlations.