Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Cold Regions Research and Engineering Laboratory (CRREL)
Clear
  • Preliminary Evaluation of Selected Expeditionary Shelter Systems in a Subarctic Environment: Phases I and II of Cold Weather Testing

    Abstract: The warming of high latitude regions is causing geopolitical concerns and spurring increased human presence across the Arctic. Potentially, these situations require only a short-term occupation necessitating tested and developed expedient infrastructure. Operating requirements for high latitude conditions are vastly divergent from temperate locations. Shelters must be able to provide habitable conditions at temperature down to −60°F, withstand 100 mph wind speeds, and support 25 lb/ft2 of snow load. Although great advances have been made in providing efficient and comfortable Arctic infrastructure since the onset of the Cold War, significant work remains to further increase efficiencies and adapt to changing weather parameters. To address infrastructure technology gaps, the US Army Corps of Engineers–Engineering Research and Development Center (USACE-ERDC) established the Arctic Infrastructure Research Group (AIRG). Over two phases of investigation, the AIRG evaluated three selected expeditionary shelter systems at its Arctic Infrastructure Research Center (AIRC) in Fairbanks, Alaska during the winters of 2020–2021 (Phase I) and 2021–2022 (Phase II).
  • High-Frequency Electromagnetic Induction for Oil Detection in Freshwater Ice Conditions

    Abstract: High-frequency electromagnetic induction (HFEMI) effectively detects objects and materials in environments where visual detection may not be possible. Existing HFEMI sensor designs are for detection of improvised explosive devices and unexploded ordinances. This project applied this technology to oil spill detection and response applications. Because of the significant ice cover experienced in the Great Lakes Regions, the US Coast Guard requires fast and effective means to detect and characterize oil spills in and under layers of ice. HFEMI technology was adapted and evaluated for its ability to detect submerged oil of various types under several conditions of ice. The signal response of the sensor shows this technology is effective at detecting different types and volumes of oil in thin to moderate ice conditions, but could be improved to expand the distance of detection for thicker ice coverage.
  • Airfield Assessments to Identify Improvements in Support of Arctic Military Operations: Arctic Airfields Assessment

    Abstract: This report examines current airfield capabilities in Alaska and Greenland as they pertain to the strategic priorities of the Northern Aerospace Defense Command (NORAD) and US Northern Command (NORTHCOM) in support of needs identified in the 2024 DoD’s Arctic Strategy. With increasing activity and competition in the circumpolar region, airfields in Alaska and Greenland play a vital role in enabling homeland defense, supporting domain awareness needs, and enabling rapid response operations. This report highlights key airfields across Alaska and Greenland, focusing on their current readiness to support NORAD-assigned airframes such as the C-17, C-130, F-15, F-16, F-22, F-35A, KC-10, KC-135 and KC-46A. It assesses currently available infrastructure, operational resilience, airfield suitability and current condition, weather considerations, and logistics sustainment. Gaps in infrastructure readiness and logistical necessities for different airframes are identified. Recommendations are provided to bolster airfield operational capabilities as they pertain to the NORAD mission, and to ensure Arctic basing remains a credible enabler of NORTHCOM’s mission to defend the US and deter threats across the circumpolar region.
  • Literature on the Load Distributions for Effects on Hydraulic Steel Structures: Notes on Existing Literature for Establishing LRFD Load Factors

    Abstract: Previous to 1993 Hydraulic Steel Structures (HSS) were designed using Allowable Stress Design (ASD); modern design, has transitioned to Load and Resistance Factor Design (LRFD) method, which targets a probability of a limit state. To implement LRFD, an understanding of the probability distributions of the loads applied to the structure, the resistances of the components of the structure, and the approximate durations and overlapping of these loads must be determined. The loads applied to HSS are dissimilar to loads applied to buildings or roads, so existing distributions cannot be applied to this problem. Any attempts to implement LRFD without these distributions will result in designs that do not target the probability of reaching a limit state. The USACE has adapted LRFD load combinations and factors to encompass the different geometry, force and displacement conditions, and environments present in HSS. This work collects literature for load effects on HSS to determine either probabilistic distributions or what loads sufficiently unknown to necessitate new research. Because the loads the HSS are subject to are dissimilar to other designed structures, these load distributions cannot be taken from them directly. Loads considered are hydrodynamic, barge impacts, debris impacts, ice expansion, seismic, wind, and waves.
  • Development and Management of Arctic Zonal Characterization Products: Geospatial Database

    Abstract: Environmental parameters for operational planning in extreme conditions require accurate knowledge of prevailing meteorological conditions. However, the Arctic region presents unique challenges due to limited observational data and unique geographical conditions. To address the need for such knowledge, this study presents an analysis of Arctic prevailing-conditions using European Center for Medium-Range Weather Forecasting (ECMWF) Reanalysis v5 (ERA5) Data from 1991 to 2020. A custom Python-based framework was developed to process and analyze hourly datasets, identifying zones of extreme events and their frequency across multiple temporal scales. The framework uses ArcPy to automate the generation of nearly 40,000 mapped classifications for land masses 60°N and above. This automated pipeline enables both static and dynamic map generation capabilities for operational planning now and in the future. The resulting dataset provides critical spatial and temporal resolution of Arctic prevailing-conditions, enabling more refined characterization of extreme prevailing-conditions across the circumpolar region.
  • Standard Operating Procedures for the Site Selection, Design, and Maintenance of All-Season Roads Linear Infrastructure

    Abstract: Planning, designing, constructing, and maintaining all-season roads in cold regions requires navigating complex environmental, hydrologic, and geomorphologic challenges. Harsh conditions, such as permafrost, frost-susceptible soils, muskeg, and extreme cold, are compounded by limited data availability, remote locations, and fragile ecosystems. Recent Arctic strategies across the DoD have identified changing weather patterns as significant threats to infrastructure, operations, and training land management in these regions. Key risks include degrading permafrost, changes in precipitation intensity and duration, and the loss of soil bearing capacity in saturated soils, all of which are examined in detail. As the Department of Defense expands Arctic training capabilities, infrastructure investments across Alaska must balance operational goals with sustainability and resilience. This report synthesizes the military’s typical methods for constructing roads in contingency environments, identifies practices used in the construction of the Alaska-Canada Highway, and draws from consultations with training land managers, a thorough literature review, and active engineering research. The report highlights the importance of holistic design that prioritizes longevity, environmental conservation, and safety by addressing cold-region challenges, mitigation strategies, and best practices. This resource is indispensable for military units and infrastructure planners tasked with navigating the complexities of cold-region infrastructure construction and operation.
  • Standard Operating Procedures for the Site Selection, Design, and Maintenance of Low-Water Crossing Linear Infrastructure in Cold Regions

    Abstract: Low-water crossings (LWCs) are critical components of DoD infrastructure in Alaska and other cold regions, yet their effective siting, design, construction, and maintenance are challenged by remote locations, limited environmental data, seasonal hydrology, and complex terrain. Harsh winter conditions, rapid spring melt, and freeze–thaw cycles introduce hazards such as ice-related scour, debris loading, and variable streambed stability. In cold-region operational areas, natural processes such as permafrost degradation, shifting hydrologic regimes, and sudden flood events from glacial or thermokarst activity further increase risk to infrastructure performance and longevity. This report addresses these challenges by consolidating best practices and mitigation strategies for LWC implementation in cold environments. Drawing on technical literature, input from land managers, and existing agency standards and SOPs, the report identifies key considerations for improving LWC resilience. These include accounting for ice forces, complex geotechnical challenges, sediment transport, and the use of appropriate materials to name a few. By framing LWCs within a systems-based approach to site selection and engineering design, the report provides guidance for supporting safe and sustainable operations across Arctic and Subarctic training environments. It serves as a technical resource for DoD planners and engineers tasked with managing infrastructure in cold regions.
  • Introduction of the Pivox System—A Low-Cost, Rapidly Deployable Modular Lidar System

    Abstract: Terrestrial light detection and ranging instruments can provide extremely valuable data for a multitude of applications in a wide variety of science and engineering fields. However, terrestrial lidar systems (TLS), are prohibitively expensive for many projects and require significant power and data resources to allow for the collection and transmittal of real-time lidar data, limiting their use in remote applications. To address the need for low-cost lidar data collection capabilities in remote environments, the US Army Corps of Engineers, Engineer Research Development Center, Cold Regions Research and Engineering Laboratory, and Geotechnical and Structures Laboratory (GSL) developed the Pivox System. The Pivox System integrates a Livox lidar sensor to a Raspberry Pi, allowing for real-time data collection, processing, and transmittal using a self-contained unit that also includes the power supply and communications equipment. We present data collected using the Pivox System in three diverse environments to measure changes in snow depth, the presence of lake ice, and erosion during a levee overtopping experiment.
  • From Analog to Digital: A Systematic Workflow for Converting Published Landform Maps to Georeferenced Datasets

    Abstract: Reference datasets for geomorphological analysis often require the integration of multiple data sources, including legacy maps and published figures that exist only as scanned images or hard copies. This report documents a systematic five-step workflow for converting landform information from these analog sources into georeferenced point datasets suitable for digital analysis. The methodology encompasses acquiring and evaluating imagery, georeferencing using ground control points, manually digitizing landform polygons, converting to centroid points using a systematic grid-based approach, and assigning attributes with quality control measures. In a case study on East Asia, we demonstrate the workflow’s practical application by processing 15 published sources to generate over 2 million labeled landform points representing approximately 1,015 km² of land across China and Mongolia. The dataset encompasses seven landform classes commonly found in arid environments: active washes, alluvial fans, bedrock, pediments, playas, sand dunes, and sand sheets. Quality assessments using analyst confidence ratings revealed reliable classification performance for most landform types. This workflow provides researchers with an efficient approach to leveraging existing published landform data, thus expanding the spatial coverage and temporal depth of reference datasets that are available for geomorphological analysis and machine learning applications.
  • Expansion of a Landform Reference Dataset in the Chihuahuan Desert for Dust Source Characterization Applications

    Abstract: This report details the development of an extensive landform reference dataset for the Chihuahuan Desert region to support validation of a machine-learning-based landform classification model. Building upon previous work by Cook et al. (2022), we expanded both the quantity and spatial coverage of reference points to better represent the study domain’s geomorphic diversity. Analysts integrated information from published literature, government databases, and satellite imagery interpretation to create a dataset of 236,582 points across 12 landform classes, aligned to a 500 m resolution grid. The bedrock/pediment/plateau class was the dominant class (58%), followed by alluvial fans (21%), aeolian sands (11%), and aeolian dunes (5%). Approximately 85% of the reference points received high analyst confidence ratings, and ratings were especially high for classes with distinctive signatures, such as bedrock features, fine-grained lake deposits, urban/developed areas, water, and agricultural lands. Classification challenges consistently emerged in transitional zones between land-forms, areas with anthropogenic modifications, and complex landform assemblages where mapping resolution proved insufficient. The resulting dataset is a valuable resource for model validation and offers insights into arid region geomorphology. Additionally, it has the potential to support multiple applications, including dust hazard forecasting, terrain mobility assessment, soil property inference, and rangeland management.