Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Cold Regions Research and Engineering Laboratory (CRREL)
Clear
  • Determination of Residual Low-Order Detonation Particle Characteristics from Composition B Mortar Rounds

    Empirical measurements of the spatial distribution, particle-size distribution, mass, morphology, and energetic composition of particles from low-order (LO) detonations are critical to accurately characterizing environ-mental impacts on military training ranges. This study demonstrated a method of generating and characterizing LO-detonation particles, previously applied to insensitive munitions, to 81 mm mortar rounds containing the conventional explosive formulation Composition B. The three sampled rounds had estimated detonation efficiencies ranging from 64% to 82% as measured by sampled residual energetic material. For all sampled rounds, energetic deposition rates were highest closer to the point of detonation; however, the mass per radial meter varied. The majority of particles (>60%), by mass, were <2 mm in size. However, the spatial distribution of the <2 mm particles from the point of detonation varied between the three sampled rounds. In addition to the particle-size-distribution results, several method performance observations were made, including command-detonation configurations, sampling quality control, particle-shape influence on laser-diffraction particle-size analysis (LD-PSA), and energetic purity trends. Overall, this study demonstrated the successful characterization of Composition B LO-detonation particles from command detonation through combined analysis by LD-PSA and sieving.
  • Live-Fire Validation of Command-Detonation Residues Testing Using a 60 mm IMX-104 Munition

    Abstract: Command detonation (i.e., static firing) provides a method of testing munitions for their postdetonation residues early in the acquisition process. However, necessary modifications to the firing train and cartridge orientation raise uncertainty whether command detonation accurately represents residue deposition as it occurs during live-fire training. This study collected postdetonation residues from live-fired 60 mm IMX-104 mortar cartridges and then compared estimated energetic-compound deposition rates between live fire and prior command detonations of the same munition. Average live-fire deposition rates of IMX-104 compounds deter-mined from 11 detonations were 3800 mg NTO (3-nitro-1,2,4-triazol-5-one), 34 mg DNAN (2,4-dinitroanisole), 12 mg RDX (1,3,5-Trinitroperhydro-1,3,5-Triazine), and 1.9 mg HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazocane) per cartridge. Total live-fire residue deposition (mean ± standard deviation: 3800 ± 900 mg/cartridge) was not significantly different from command detonation using a representative fuze simulator (3800 ± 900 mg/cartridge, n = 7, p = 0.76) but was significantly different from command detonation using a simplified fuze simulator (2200 ± 500 mg/cartridge, n = 7, p < 0.01). While the dominant residue compound NTO was broadly similar between live fire and command detonation, the minor residue compounds RDX and DNAN were underestimated during command detonation by a factor of approximately three to seven.
  • McMurdo Snow Roads and Transportation: Final Program Summary

    Abstract: The snow roads at McMurdo Station, Antarctica, are the primary transportation corridors for moving personnel and material to and from the airfields servicing intra- and intercontinental air traffic. The majority of the road system is made of snow overlying a snow, firn, and icy subsurface and is particularly susceptible to deterioration during the warmest parts of the austral summer when above-freezing temperatures can occur for several days at a time. Poor snow-road conditions can seriously limit payloads for all types of ground vehicles. The US Army Cold Regions Research and Engineering Laboratory (CRREL) studied the McMurdo snow roads for the National Science Foundation Office of Polar Programs as part of the Snow Roads and Transportation (SRT) program. The goals of the SRT program was to improve construction, maintenance, and use of the McMurdo’s snow roads, with particular attention on minimizing warm-season deterioration. This is the final report of the SRT program, summarizing the program’s activities and findings and emphasizing those parts of the program not previously documented in CRREL Reports, conference papers, or journal articles.
  • Thermal Infra-Red Comparison Study of Buried Objects between Humid and Desert Test Beds

    Abstract: This study pertains to the thermal variations caused by buried objects and their ramifications on soil phenomenology. A multitude of environmental conditions were investigated to observe the effect on thermal infrared sensor performance and detection capabilities. Correlations between these external variables and sensor contrast metrics enable determinable key factors responsible for sensor degradation. This document consists of two parts. The first part is a summary of data collected by the U.S. Army Corps of Engineers, Engineer and Research and Development Center Cold Regions Research and Engineering Laboratory (ERDC-CRREL), ERDC-Geotechnical Structures Laboratory, and Desert Research Institute at the Yuma Proving Ground (YPG) site in February 2020 and observations from this activity. The second part is a comparison of target visibility between data collected at YPG and data collected at the ERDC-CRREL test site in 2018.
  • Understanding and Improving Snow Processes in Noah-MP over the Northeast United States via the New York State Mesonet

    Abstract: Snow is a critical component of the global hydrologic cycle and is a key input to river and stream flow forecasts. In 2016, the National Oceanic and Atmospheric Administration launched the National Water Model (NWM) to provide a high-fidelity numerical forecast of streamflow integrated with the broader atmospheric prediction modeling framework. The NWM is coupled to the atmospheric model using the Noah-MP land surface modeling framework. While snow in Noah-MP has been consistently evaluated in the western United States, less attention has been paid to understanding and optimizing its performance in the Northeast US (NEUS). The newly installed New York State Mesonet (NYSM), a network of high-quality surface meteorological stations distributed across New York State, provides a unique opportunity to evaluate Noah-MP performance in the NEUS. In this report, we document the methodology used to perform single-column simulations using meteorological inputs from the NYSM and compare the point evaluations against baseline NWM performance. We further discuss how enhanced surface energy balance measurements at a selection of NYSM sites can be used to evaluate specific components of Noah-MP and present initial results.
  • South Pole Station Snowdrift Model

    Abstract: The elevated building at Scott-Amundsen South Pole Station was designed to mitigate the effects of windblown snow on it and the surrounding infrastructure. Because the elevation of the snow surface increases annually, the station is periodically lifted on its support columns to maintain its design height above the snow surface. To assist with planning these lifts, this effort developed a computational model to simulate snowdrift formation around the elevated building. The model uses computational fluid dynamics methods and synthetic wind record generation derived from statistical analysis of meteorological data. Simulations assessed the impact of several options for the lifting operation on drifts surrounding the elevated building. Simulation results indicate that raising the eastern-most building section (Pod A), or the entire station all at once, can reduce drift accumulation rates over the nearby arches structures. Long-term analyses, spanning 5–6 years, determine whether an equilibrium drift condition may be reached after a long period of undisturbed drift development. These simulations showed that after about 6 years, the rate of growth of the upwind drift slows, appearing to approach an equilibrium condition. However, the adjacent drifts were still increasing in depth at a roughly linear rate, indicating that equilibrium for those drifts was still several seasons away.
  • SAGE-PEDD Theory Manual: Modeling Windblown Snow Deposition around Buildings

    Abstract: Numerical modeling of snowdrifting is a useful tool for assessing the im-pact of building design on operations and facility maintenance. Here we outline the theory for the SAGE-PEDD snowdrift model that has applica-tion for determining snowdrift accumulation around buildings. This model uses the SAGE computational fluid dynamics code to determine the flow field in the computational domain. A particle entrainment, dis-persion, and deposition (PEDD) model is coupled to SAGE to simulate the movement and deposition of the snow within the computational do-main. The report also outlines areas of future development that upgrades to the SAGE-PEDD model should address.
  • SAGE-PEDD User Manual

    Abstract: SAGE-PEDD is a computational model for estimating snowdrift shapes around buildings. The main inputs to the model are wind speed, wind direction, building geometry and initial ground or snow-surface topography. Though developed mainly for predicting snowdrift shapes, it has the flexibility to accept other soil types, though this manual addresses snow only. This manual provides detailed information for set up, running, and viewing the output of a SAGE-PEDD simulation.
  • Simulating Environmental Conditions for Southwest United States Convective Dust Storms Using the Weather Research and Forecasting Model v4.1

    Abstract: Dust aerosols can pose a significant detriment to public health, transportation, and tactical operations through reductions in air quality and visibility. Thus, accurate model forecasts of dust emission and transport are essential to decision makers. While a large number of studies have advanced the understanding and predictability of dust storms, the majority of existing literature considers dust production and forcing conditions of the underlying meteorology independently of each other. Our study works towards filling this research gap by inventorying dust-event case studies forced by convective activity in the Desert Southwest United States, simulating select representative case studies using several configurations of the Weather Research and Forecasting (WRF) model, testing the sensitivity of forecasts to essential model parameters, and assessing overall forecast skill using variables essential to dust production and transport. We found our control configuration captured the initiation, evolution, and storm structure of a variety of convective features admirably well. Peak wind speeds were well represented, but we found that simulated events arrived up to 2 hours earlier or later than observed. Our results show that convective storms are highly sensitive to initialization time and initial conditions that can preemptively dry the atmosphere and suppress the growth of convective storms.
  • A Tutorial on the Rapid Distortion Theory Model for Unidirectional, Plane Shearing of Homogeneous Turbulence

    Abstract: The theory of near-surface atmospheric wind noise is largely predicated on assuming turbulence is homogeneous and isotropic. For high turbulent wavenumbers, this is a fairly reasonable approximation, though it can introduce non-negligible errors in shear flows. Recent near-surface measurements of atmospheric turbulence suggest that anisotropic turbulence can be adequately modeled by rapid-distortion theory (RDT), which can serve as a natural extension of wind noise theory. Here, a solution for the RDT equations of unidirectional plane shearing of homogeneous turbulence is reproduced. It is assumed that the time-varying velocity spectral tensor can be made stationary by substituting an eddy-lifetime parameter in place of time. General and particular RDT evolution equations for stochastic increments are derived in detail. Analytical solutions for the RDT evolution equation, with and without an effective eddy viscosity, are given. An alternative expression for the eddy-lifetime parameter is shown. The turbulence kinetic energy budget is examined for RDT. Predictions by RDT are shown for velocity (co)variances, one-dimensional streamwise spectra, length scales, and the second invariant of the anisotropy tensor of the moments of velocity. The RDT prediction of the second invariant for the velocity anisotropy tensor is shown to agree better with direct numerical simulations than previously reported.