Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Cold Regions Research and Engineering Laboratory (CRREL)
Clear
  • Seasonal Variation in Near-Surface Seasonally Thawed Active Layer and Permafrost Soil Microbial Communities

    Abstract: Understanding how soil microbes respond to permafrost thaw is critical to predicting the implications of climate change for soil processes. However, our knowledge of microbial responses to warming is mainly based on laboratory thaw experiments, and field sampling in warmer months when sites are more accessible. In this study, we sampled a depth profile through seasonally thawed active layer and permafrost in the Imnavait Creek Watershed, Alaska, USA over the growing season from summer to late fall. Amplicon sequencing showed that bacterial and fungal communities differed in composition across both sampling depths and sampling months. Surface communities were most variable while those from the deepest samples, which remained frozen throughout our sampling period, showed little to no variation over time. However, community variation was not explained by trace metal concentrations, soil nutrient content, pH, or soil condition (frozen/thawed), except insofar as those measurements were correlated with depth. Our results highlight the importance of collecting samples at multiple times throughout the year to capture temporal variation, and suggest that data from across the annual freeze-thaw cycle might help predict microbial responses to permafrost thaw.
  • Iron Oxidation–Reduction Processes in Warming Permafrost Soils and Surface Waters Expose a Seasonally Rusting Arctic Watershed

    Abstract: Landscape-scale changes from climate change in the Arctic affect the soil thermal regime and impact the depth to permafrost in vulnerable tundra watersheds. When top-down thaw of permafrost occurs, oxygen and porewaters infiltrate deeper in the soil column exposing fresh, previously frozen material and altering redox conditions. A gap remains in understanding how redox stratifications in thawing permafrost impact the geochemistry of watersheds in response to climate change and how investigations into redox may be scaled by coupling extensive geophysical mapping techniques. In this study, we collected soils and soil porewaters from three soil pits and surface water samples from an Arctic watershed on the North Slope of Alaska and analyzed for trace metals iron (Fe) and manganese (Mn) and Fe oxidation state using bulk and microscale techniques. We also used geophysical mapping and soil thermistors to measure active layer depths across the watershed to relate accelerating permafrost thaw to watershed geochemistry. Overall, evidence showed that Fe and Mn could be useful as geochemical indicators of permafrost thaw and release of Fe(II) from thawing permafrost and further oxidation to Fe(III) could translate to a higher degree of seasonal rusting coinciding with the warming and thawing of near surface-permafrost.
  • Post-wildfire Curve Number Estimates for the Southern Rocky Mountains in Colorado, USA

    Abstract: The curve number method first developed by the USDA Soil Conservation Service (now the Natural Resources Conservation Service) is often used for post-wildfire runoff assessments. These assessments are critical for land and emergency managers making decisions on life and property risks following a wildfire event. Three approaches (i.e., historical event observations, linear regression model, and regression tree model) were used to help estimate a post-wildfire curve number from watershed and wildfire parameters. For the first method, we used runoff events from 102 burned watersheds in Colorado, southern Wyoming, northern New Mexico, and eastern Utah to quantify changes in curve number values from pre- to post-wildfire conditions. The curve number changes from the measured runoff events vary substantially between positive and negative values. The measured curve number changes were then associated with watershed characteristics (e.g., slope, elevation, northness, and eastness) and land cover type to develop prediction models that provide estimates of post-wildfire curve number changes. Finally, we used a regression tree method to demonstrate that accurate predications can be developed using the measured curve number changes from our study domain. These models can be used for future post-wildfire assessments within the region.
  • Porosity Measurement Device Design and Analysis

    Abstract: Porosity measurements are necessary to fully characterize the acoustic properties of a porous material. Many methods exist to measure porosity with various limitations. This report details a system based on previous work to limit environmental effects on measurements.
  • Getting Started with FUNWAVE-TVD: Troubleshooting Guidance and Recommendations

    Abstract: This technical note reviews some common initialization errors when first getting started with the numerical wave model, FUNWAVE-TVD (Fully Nonlinear Wave model–Total Variation Diminishing), and provides guidance for correcting these errors. Recommendations for troubleshooting the source or cause of instabilities in an application of the model as well as recognizing the difference between physical and numerical instabilities are also outlined and discussed. In addition, a quick start troubleshooting guide is provided in the Appendix. This guidance is particularly useful for novice to intermediate users of FUNWAVE-TVD who are less familiar with the workflow of setting up the model and interpreting error output statements.
  • Additive Regulated Concrete for Thermally Extreme Conditions

    Abstract: This study details a multiprong effort to validate the Cold Regions Research and Engineering Laboratory’s solution for concrete construction and repair in cold weather, Additive Regulated Concrete for Thermally Extreme Conditions (ARCTEC). ARCTEC is the product of several years of research and consists of a testing and simulation workflow which generates scenario-sensitive guidance for use of accelerating admixtures in concrete. This report details efforts to validate ARCTEC using real-world, full-scale, field demonstrations. These demonstrations were used to collect data on the behavior of concrete obtained through conventional supply chains, to assess the accuracy of the simulation component of the workflow, and test efficacy of ARCTEC guidance in achieving frost protection. Results indicate that ARCTEC is at a high level of maturity, and provides additive dosage guidance that ensures frost protection and strength development in concrete placed where overnight lows fall as low as 0°F. The effort and cost required to implement ARCTEC as a cold weather protection strategy is minimal, and significantly less burdensome than conventional methods. Any cold region installation with a winter construction or repair needs and access to conventional concrete supply chains could field ARCTEC, and reduce the cost and schedule constraints associated with winter construction.
  • Beyond Glacier-Wide Mass Balances: Parsing Seasonal Elevation Change into Spatially Resolved Patterns of Accumulation and Ablation at Wolverine Glacier, Alaska

    Abstract: We present spatially distributed seasonal and annual surface mass balances of Wolverine Glacier, Alaska, from 2016 to 2020. Our approach accounts for the effects of ice emergence and firn compaction on surface elevation changes to resolve the spatial patterns in mass balance at 10 m scale. We present and compare three methods for estimating emergence velocities. Firn compaction was constrained by optimizing a firn model to fit three firn cores. Distributed mass balances showed good agreement with mass-balance stakes (RMSE = 0.67 m w.e., r = 0.99, n = 41) and ground-penetrating radar surveys (RMSE = 0.36 m w.e., r = 0.85, n = 9024). Fundamental differences in the distributions of seasonal balances highlight the importance of disparate physical processes, with anomalously high ablation rates observed in icefalls. Winter balances were found to be positively skewed when controlling for elevation, while summer and annual balances were negatively skewed. We show that only a small percent of the glacier surface represents ideal locations for mass-balance stake placement. Importantly, no suitable areas are found near the terminus or in elevation bands dominated by icefalls. These findings offer explanations for the often-needed geodetic calibrations of glaciological time series.
  • Snow-Impacted National Inventory of Dams by GAGESII Watershed

    Abstract: This Engineering Research and Development Center (ERDC) Technical Note describes the development of a set of locations within the contiguous United States (CONUS) where snowmelt is a component of the annual streamflow. The locations are selected from the US Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating Streamflow II (GAGESII) and National Inventory of Dams (NID) data sets. The 30-year normal snow regimes were used to identify all GAGESII watersheds that have any of the basin delineated as transitional (rain/snow), snow dominated, or perennial snow zones. NID dams that are within snow affected GAGESII watersheds are included in the data set. The purpose of this ERDC Technical Note is to describe the development of a comprehensive data set of CONUS GAGESII and dam infrastructure affected by snow changing regimes.
  • Application of Multi-fidelity Methods to Rotorcraft Performance Assessment

    Abstract: We present a Python-based multi-fidelity tool to estimate rotorcraft performance metrics. We use Gaussian-Process regression (GPR) methods to adaptively build a surrogate model using a small number of high-fidelity CFD points to improve estimates of performance metrics from a medium-fidelity comprehensive analysis model. To include GPR methods in our framework, we used the EmuKit Python package. Our framework adaptively chooses new high-fidelity points to run in regions where the model variance is high. These high-fidelity points are used to update the GPR model; convergence is reached when model variance is below a pre-determined level. To efficiently use our framework on large computer clusters, we implemented this in Galaxy Simulation Builder, an analysis tool that is designed to work on large parallel computing environments. The program is modular, and is designed to be agnostic to the number and names of dependent variables and to the number and identifying labels of the fidelity levels. We demonstrate our multi-fidelity modeling framework on a rotorcraft collective sweep (hover) simulation and compare the accuracy and time savings of the GPR model to that of a simulation run with CFD only.
  • Spherical Shock Waveform Reconstruction by Heterodyne Interferometry

    Abstract: The indirect measurement of shock waveforms by acousto-optic sensing requires a method to reconstruct the field from the projected data. Under the assumption of spherical symmetry, one approach is to reconstruct the field by the Abel inversion integral transform. When the acousto-optic sensing modality measures the change in optical phase difference time derivative, as for a heterodyne Mach–Zehnder interferometer, e.g., a laser Doppler vibrometer, the reconstructed field is the fluctuating refractive index time derivative. A technique is derived that reconstructs the fluctuating index directly by assuming plane wave propagation local to a probe beam. With synthetic data, this approach is compared to the Abel inversion integral transform and then applied to experimental data of laser-induced shockwaves. Time waveforms are reconstructed with greater accuracy except for the tail of the waveform that maps spatially to positions near a virtual origin. Furthermore, direct reconstruction of the fluctuating index field eliminates the required time integration and results in more accurate shock waveform peak values, rise times, and positive phase duration.