Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: hydrodynamics
  • Mississippi River AdH Model Modification and Evaluation, Thebes, Illinois, to Birds Point, Missouri, Reach

    Abstract: A calibrated hydrodynamic and sediment transport model of the Upper Mississippi River, from Thebes, Illinois, to Birds Point, Missouri, was created to investigate hydraulics and sediment transport in the river channel and across the Dogtooth Island Peninsula (DIP) as the result of the Len Small levee breach. A hydrodynamic model was developed for the reach and calibrated to stage and breach outflow discharge data for the floods of 2011, 2015–2016, and 2017. The hydrodynamic model was used to investigate breach outflow discharges and shear stress distribution over the DIP. Soil and geologic maps were investigated to determine soil parameters and the long-term stability of soil formations on the DIP. The Upper Mississippi River sediment transport model was built upon the hydrodynamic model and soil mapping efforts. The sediment transport model was calibrated to the 2015 and 2017 flood events. Calibration data were limited to changes in elevation, which were then areally averaged, computed from comprehensive channel surveys and lidar data for the DIP. This model provides a solid foundation for comparing alternative measures to minimize further erosion of the DIP and for analyzing the risk of a channel cutoff occurring.
  • Use of Sediment Tracers to Evaluate Sediment Plume at Beaufort Inlet and Adjacent Beaches, North Carolina

    Abstract: This report documents a numerical modeling investigation on the transport of sediment material placed on designated disposal sites adjacent to Beaufort Inlet, North Carolina. Historical and newly collected wave and hydrodynamic data around the inlet are assembled and analyzed. The data sets are used to calibrate and validate a coastal wave, hydrodynamic and sediment transport model, the Coastal Modeling System. Model alternatives are developed corresponding to different material placement sites. Sediment transport and sediment plume distribution are evaluated within and around the immediate vicinity of the Beaufort Inlet estuarine system for a representative summer and winter month. Results of model simulations show that high flows occur along navigation channels and low flows occur outside the inlet in open ocean area. Sand materials placed in nearshore sites tend to be trapped in and move along navigation channels entering the inlet. In offshore placement sites the sediment plume shows slow spreading and no significant sand migration from its release locations. Simulations for the summer and winter month present similar distribution patterns of sediments originating from placement sites.
  • Dockerization of the Coastal Model Test Bed Toolkit

    Purpose: The purpose of this technical note is to document and describe changes made to the Coastal Model Test Bed (CMTB) suite of software in conjunction with the version 2 (V2) update.
  • Real-Time Forecasting Model Development Work Plan

    Abstract: The objective of the Lowermost Mississippi River Management Program is to move the nation toward more holistic management of the lower reaches of the Mississippi River through the development and use of a science-based decision-making framework. There has been substantial investment in the last decade to develop multidimensional numerical models to evaluate the Lowermost Mississippi River (LMMR) hydrodynamics, sediment transport, and salinity dynamics. The focus of this work plan is to leverage the existing scientific knowledge and models to improve holistic management of the LMMR. Specifically, this work plan proposes the development of a real-time forecasting (RTF) system for water, sediment, and selected nutrients in the LMMR. The RTF system will help inform and guide the decision-making process for operating flood-control and sediment-diversion structures. This work plan describes the primary components of the RTF system and their interactions. The work plan includes descriptions of the existing tools and numerical models that could be leveraged to develop this system together with a brief inventory of existing real-time data that could be used to validate the RTF system. A description of the tasks that would be required to develop and set up the RTF system is included together with an associated timeline.
  • Houston Ship Channel Numerical Model Update and Validation

    Abstract: The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Corps of Engineers, Galveston District (SWG), requested the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, update and revalidate a previously developed three-dimensional Adaptive Hydraulics (AdH) hydrodynamic and sediment model of the HSC, Galveston, and Trinity Bays. The model is necessary for analyzing potential impacts on salinity, sediment, and hydrodynamics due to alternatives designed to reduce shoaling in the HSC. SWG requested an updated validation of the previously developed AdH model of this area to calendar years 2010 and 2017, utilizing newly collected sediment data. Updated model inputs were supplied for riverine suspended sediment loads as well as for the ocean tidal boundary condition. The updated model shows good agreement to field data in most conditions but also indicates potential issues with freshwater flow inputs as well as the ocean salinity boundary condition.
  • Evaluation of Structural and Operational Alternatives to Optimize the Distribution of Water and Sediment in the Passes of the Mississippi River

    Abstract: Mississippi River shoaling and dredging processes in the vicinity of Head of Passes and in Southwest Pass were investigated. Existing rates of deposition and dredging were determined using near-daily eHydro bathymetric surveys, National Dredging Quality Management dredge operating data, and geospatial processing steps developed for this study. These surveys provide a means to characterize the highly dynamic and variable sedimentation patterns observed in the navigation channel. The HEC-6T one-dimensional numerical sedimentation model was used to evaluate possible modifications to the distribution of water and sediment in the Mississippi River near Head of Passes in an attempt to reduce shoaling in the navigation channel. The model was used to evaluate the effects of partial closures of several distributaries downstream from Venice and to evaluate the effects of channel widening and channel deepening adjacent to the Hopper Dredge Disposal Area at Head of Passes. In this study, various structural alternatives were compared to a base test that represented existing conditions. Sedimentation and dredging effects were projected 50 years into the future.
  • Mississippi River Climate Model–Based Hydrograph Projections at the Tarbert Landing Location

    Abstract: To better understand and prepare for the possible effects associated with potential climate changes on the lower Mississippi River, the State of Louisiana Coastal Protection and Restoration Authority sought information on the historical, current, and projected future hydrodynamics of the Mississippi River. To this end, flow duration curves (FDC) for the Tarbert Landing location were generated, based on climate models derived from two of the four scenarios of the Coupled Model Intercomparison Project, Phase 5 (CMIP5), multimodel ensemble representative concentration pathways (RCPs). The global CMIP5 datasets were used by the variable infiltration capacity land surface model to produce a runoff dataset, using a bias-correction spatial disaggregation approach. The runoff datasets were then applied to simulate streamflow using the Routing Application for Parallel computatIon of Discharge (RAPID) river routing model. Based on the streamflow, FDCs were calculated for 16 CMIP5 as well as observed historical data at the Tarbert Landing location. Key observations from the results are that the 90th percentile exceedance of the simulated versus the observed flows is more frequent for the RCP 8.5 scenario than for the RCP 4.5 scenario and that the maximum annual flows for the RCP 8.5 scenario are generally smaller than for the RCP 4.5 scenario.
  • Representative Beach Profile Generator

    Abstract: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to introduce an Esri ArcGIS Pro ArcPy Toolbox entitled “Representative Beach Profile Generator (RBPG)” that generates a single representative profile for a given study area based on elevation profiles. The toolbox aligns and averages input elevation profiles into a single profile based upon a chosen alignment feature. Furthermore, the toolbox allows the user to create maximum and minimum trapezoidal profile approximations for use within numerical models such as Storm-Induced BEAch CHange (SBEACH) and Beach-fx. This CHETN presents a brief description of the toolbox methods and includes a short demonstration of the toolbox’s application to help familiarize the user with inputs, outputs, and possible uses. The RBPG toolbox is available for public download at the link where this paper is hosted with the US Army Engineer Research and Development Center library services (
  • Wave Attenuation of Coastal Mangroves at a Near-Prototype Scale

    Abstract: A physical model study investigating the dissipation of wave energy by a 1:2.1 scale North American red mangrove forest was performed in a large-scale flume. The objectives were to measure the amount of wave attenuation afforded by mangroves, identify key hydrodynamic parameters influencing wave attenuation, and provide methodologies for application. Seventy-two hydrodynamic conditions, comprising irregular and regular waves, were tested. The analysis related the dissipation to three formulations that can provide estimates of wave attenuation for flood risk management projects considering mangroves: damping coefficient β, drag coefficient CD, and Manning’s roughness coefficient n. The attenuation of the incident wave height through the 15.12 m long, 1:2.1 scale mangrove forest was exponential in form and varied from 13%–77%. Water depth and incident wave height strongly influenced the amount of wave attenuation. Accounting for differences in water depth using the sub-merged volume fraction resulted in a common fit of the damping coefficient as a function of relative wave height and wave steepness. The drag coefficient demonstrated a stronger relationship with the Keulegan–Carpenter number than the Reynolds number. The linear relationship be-tween relative depth and Manning’s n was stronger than that between Manning’s n and either relative wave height or wave steep
  • The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment

    NOTE: The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment is a 9-volume series of reports that was produced under the direction of the Mississippi River Geomorphology & Potamology Program. An abstract from the main report, Volume 1, is listed below, along with the individual volume titles and links to the relevant reports. ABSTRACT: This is the main report of Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment. The primary objective of the OMAR Technical Assessment was to conduct a comprehensive evaluation that aimed to understand the impacts of former and potential changes to the system in the vicinity of the Old River Control Complex (ORCC) over time, the water and sediment delivery regime at the ORCC, and the effects to the river system surrounding the ORCC. Scenarios evaluated in this technical assessment were designed to investigate potential system responses to a wide range of possible operational alternatives and identify knowledge gaps in current understanding of system behavior. This report summarizes and synthesizes the individual reports detailing the investigations into specific aspects of the ORCC and the surrounding region.