Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: hydrodynamics
Clear
  • PUBLICATION NOTICE: Shallow Water Seakeeping Tests with Columbia Class Submarine for Integration into the Environmental Monitoring and Operator Guidance System

    Abstract: The Environmental Monitoring and Operation Guidance System (EMOGS) tool was developed in 1989 to provide a real-time risk analysis for underkeel clearance for the Ohio class submarine while in transit to the Naval Submarine Base at Kings Bay, Georgia. The program computes expected submarine response for input water level, depth, speed, wave, and other input conditions using shallow-water motion transfer functions generated by the strip theory tool, Large Amplitude Motion Program (LAMP). The integration of the new Columbia class submarine into EMOGS required that new transfer functions be developed using LAMP. The LAMP results are to be validated using measured motions from physical model laboratory testing. This report summarizes a laboratory study of the Columbia class submarine response in shallow-water waves. The study was conducted at the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, and was done in direct support of the Naval Surface Warfare Center, Carderock Division. These seakeeping tests were performed in a shallow basin with a multi-directional wave generator, with measured still water vessel motions and measured vessel motion in regular and irregular waves of varying height, period, and direction.
  • PUBLICATION NOTICE: Three Rivers, Southeast Arkansas Navigation Study: Ship Simulation Report

    Abstract: The McClellan-Kerr Arkansas River System (MKARNS) is a major inland waterway that begins at the Port of Catoosa in Tulsa, OK, and travels to the confluence of the White and Mississippi Rivers. Over the years, many structures have been built to help control overland flow between the White, Arkansas, and Mississippi Rivers. These structures have required a significant amount of rehabilitation, which has resulted in high maintenance costs. The US Army Corps of Engineers and the Arkansas Waterways Commission conducted the Three Rivers Southeast Arkansas Feasibility Study (also known as the Three Rivers Study). The Three Rivers Study focused on providing long-term dependable navigation in the MKARNS. From this study, a proposal was developed that included a 1,000 ft reopening of the Historic Cutoff and a reinforcement of several areas near the White River. In 2019, the US Army Engineer Research and Development Center Ship/Tow Simulator was used to perform a navigation study to ensure the proposed modifications did not negatively impact navigation on the White River section of the MKARNS. Assessment of the proposed modifications was accomplished through analysis of ship simulations completed by experienced pilots, discussions, track plots, run sheets, and final pilot surveys.
  • PUBLICATION NOTICE: Hydrodynamics of a Recently Restored Coastal Wetland: Hamilton Wetlands, California

    Abstract: Hamilton Wetlands is a recently restored tidally influenced basin located along the northwest coast of San Pablo Bay, California. Instruments to measure waves, currents, and wind were deployed for a period of up to 2 years shortly after tidal flow was re-introduced to the wetland to examine the sediment and hydrodynamic response. The results indicate that local re-suspension is relatively rare owing to the weak interior tidal currents and the limited fetch within the 3 km long basin. Asymmetries in the acoustic backscatter intensity combined with the much higher flow speeds measured at the entrance suggest a net import of fine sediment. The basin also experiences a distinct seasonal variation that likely contributes to sediment re-distribution. During the summer months, higher wind speeds correlate with turbidity suggesting local re-suspension of fines that are distributed by winds. Overall, the measurements suggest that the sediment dynamics in this shallow water system are controlled by two main factors: (1) net sediment import through the inlet entrance and (2) mixing of interior sediment through a combination of intermittent wind and wave stirring.
  • PUBLICATION NOTICE: Structural Analysis of an Improved Ribbon Bridge Subjected to Hydrodynamic and Vehicular Loading

    Abstract: Structural modeling and simulations were performed to determine limit states of an Improved Ribbon Bridge (IRB) subjected to hydraulic and vehicle loadings. Measurements of as-built IRB bays were used to construct a three-dimensional, computer-aided design model. The model was used to create a computational finite element model (FEM) that was validated through correlations of simulation results and empirical data. The validated FEM was used to establish limit states (i.e., maximum current and vehicular loading conditions for 110 and 210 m IRB crossings). Analyses revealed that the primary structural failure mode was yielding in the steel pins that link IRB bays. Assuming the IRB is adequately restrained at the shores, a 110 m IRB can withstand currents up to 11 ft/s with no vehicle traffic; a 210 m IRB can endure up to 7 ft/s under the same conditions. For risk crossings, one Military Load Classification-70 vehicle on the bridge, 110 and 210 m IRBs can tolerate currents up to 9 and 7 ft/s, respectively. Under normal crossing conditions vehicle spaced 100 ft apart, a 110 m IRB has the structural capacity to endure currents up to 9 ft/s; the maximum current for a 210 m IRB is 5 ft/s.
  • PUBLICATION NOTICE: Analysis of Nearshore Placement of Sediments at Ogden Dunes, Indiana

    ABSTRACT: The harbor structures/shoreline armoring on the southern Lake Michigan shoreline interrupt sand migration. Ogden Dunes, Indiana, and the nearby Indiana Dunes National Lakeshore observed shoreline erosion due to engineered structures associated with Burns Waterway Harbor (east of Ogden Dunes) impeding natural east-to-west sediment migration. To remedy this, USACE placed over 450,000 cubic meters (m3) of dredged material post-2006 in the nearshore of Ogden Dunes. However, the effectiveness of nearshore placements for shoreline protection and littoral nourishment is not fully established. To improve nearshore placement effectiveness, USACE monitored the June/July 2016 placement and subsequent movement of 107,000 m3 of dredged material in the nearshore region at Ogden Dunes. This involved an extensive monitoring scheme (three bathymetry surveys, and two acoustic Doppler current profiler deployments), a Coastal Modeling System (CMS) numerical model of the changes following placement, and a prediction of sediment transport direction using the Sediment Mobility Tool (SMT). The SMT-predicted sediment migration direction was compared to observations. Observations indicated that between 10/11/2016 and 11/15/2016 the centroid of the sediment above the pre-placement survey moved 17 m onshore. These observations agreed with SMT predictions — onshore migration under storm and typical wave conditions. CMS accurately reproduced the hydrodynamic features.