Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Hydraulic structures
Clear
  • Traveling Kevel Load Analysis for Inland Locks, Phase I: Previous Failures

    Abstract: The US Army Engineer Research and Development Center (ERDC) has begun an investigation of the load conditions experienced by a traveling kevel when moored to a moving barge train. These traveling kevel systems are essential for the safe and efficient use of the US Army Corps of Engineers (USACE) navigation lock inventory. This work is being conducted as part of the Navigation Systems Research Program of the Coastal and Hydraulics Laboratory (CHL). Recent failures of traveling kevels suggest that the existing design guidance for design loads for traveling kevels may need updating. This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the pertinent background information and the current issues related to previous traveling kevel failures.
  • Statistical Analysis of Storm Surge and Seiche Hazards for Lake Erie

    Abstract: Storm surge and seiche events are generally forced by severe storms, initially resulting in a wind-driven super elevation of water level on one or more sides of a lake (surge) followed by a rebound and periodic oscillation of water levels between opposing sides of the lake (seiche). These events have caused flooding along Lake Erie and significant damages to coastal communities and infrastructure. This study builds upon statistical analysis methods initially developed for the 2012 federal interagency Great Lakes Coastal Flood Study. Using the Coastal Hazards System's stochastic Storm Simulation (StormSim) suite of tools, including the Probabilistic Simulation Technique (PST), and regional frequency model, historical extreme events were assessed in a local frequency analysis and a regional frequency analysis to quantify the annual exceedance frequency (AEF) of WLD events specific to Lake Erie. The objective of this study was to quantify AEFs of storm surge and seiche hazards to provide a better understanding of these events to aid flood mitigation and risk reduction for lakeside properties.
  • Low Sill Control Structure: Physical Modeling Investigation of Riprap Stability Downstream of End Sill

    The model investigation reported herein describes the process to model and analyze the stability of scaled riprap in the existing 1:55 Froude-scaled Low Sill Control Structure physical model. The existing model is a fixed-bed model, so modifications were made to create a testing section for the scaled stone. Three separate gradations of scaled riprap were tested at varying boundary conditions (discharge, head and tailwater elevations, and gate openings). Each test was surveyed using lidar for pre to posttest comparisons. It was found that Gradation B remained stable throughout the tests in the physical model.
  • Low Sill Control Structure: Physical Modeling Investigation of Velocities Downstream of the End Sill

    Abstract: The model investigation reported herein describes the process to measure velocities at various locations downstream of the Low Sill Control Structure using an existing 1:55 Froude-scaled physical model. To collect these measurements, an acoustic-Doppler velocimeter was deployed downstream of the structure at varying locations and depths. A total of 79 velocity measurements were taken across nine flow conditions (discharge, head and tailwater elevations, and gate openings) provided by the US Army Corps of Engineers, New Orleans District.
  • Risk-Based Prioritization of Operational Condition Assessments: Trinity River and Willamette River Case Studies

    Abstract: The US Army Corps of Engineers (USACE) operates, maintains, and man-ages over 700 dams and 4,000 miles of levees, providing approximately $257 billion worth of economic benefit to the Nation. USACE employs the Operational Condition Assessment (OCA) process to understand the condition of those assets and allocate resources to minimize risk associated with performance degradation. Understanding risk in flood risk management (FRM) assets requires an understanding of consequence of asset failure from a systemwide FRM watershed perspective and an understanding of likelihood of degradation based on the condition of the low-level components derived from OCA ratings. This research demonstrates a case-study application of a scalable methodology to model the likelihood of a dam performing as expected given the state of its gates and their components. The research team combines this likelihood of degradation with consequences generated by the application of designed simulation experiments with hydrological models to develop risk measures. These risk measures can be developed for all FRM gate assets in order to enable traceable, consistent resource allocation decisions. Two case study applications are provided.
  • Simulated Barge Impacts on Fiber-Reinforced Polymers (FRP) Composite Sandwich Panels: Dynamic Finite Element Analysis (FEA) to Develop Force Time Histories to Be Used on Experimental Testing

    Abstract: The purpose of this study is to evaluate the dynamic response of fiber-reinforced polymer (FRP) composite sandwich panels subjected to typical barge impact masses and velocities to develop force time histories that can be used in controlled experimental testing. Dynamic analyses were performed on FRP composite sandwich panels using the finite element method software Abaqus/Explicit. The “traction-separation” law in the Abaqus software is used to define the cohesive surface interaction properties to evaluate the damage between FRP composite laminate layers as well as the core separation within the sandwich panels. Numerical models were developed to better under-stand the damage caused by barge impacts and the effects of impacts on the dynamic response of composite structures. Force, displacement, and velocity time histories were obtained with finite element modeling for several mass and velocity cases to develop experimental testing procedures for these types of structures.
  • Review of Regressive Channel Erosion and Grade Control Options on the Rio Coca, Ecuador

    Purpose: The US Army Corps of Engineers (USACE) is assisting the Ecuadorian state-run Corporación Eléctrica del Ecuador (CELEC) in addressing a water resource issue involving regressive channel erosion on the Rio Coca. Reconnaissance of the site was completed the week of 21 February 2022; parts of the river system were viewed to determine if improvements could be made to the current grade control structure (GCS) mitigation plan for reducing channel erosion and stabilizing the river system downstream of the Coca Coda Sinclair (CCS) Dam. The Rio Coca is a tributary to the Amazon River system in South America. It originates on the east side of the Andes Mountains and generally flows from southwest to northeast through the project area and then turns and flows east into the Amazon basin (Figure 1).* The Rio Coca valley is a current example of how damaging regressive erosion can be to a fluvial system (Figure 2).
  • Sensitivity of Simulated Flaw-Height Estimates to Phased Array Scan Parameters

    Abstract: Phased array ultrasonic testing (PAUT) is a nondestructive testing (NDT) technique for detecting and sizing flaws in welds. Estimates of flaw size are sensitive to a variety of PAUT scan parameters. In this study, estimates of flaw height are simulated using computer software. The sensitivity of these estimates to selected PAUT scan parameters is analyzed to identify those that have the greatest influence on estimates of flaw height. Understanding how varying different parameters within a phased array instrument affects the accuracy of flaw-height estimates helps to validate PAUT scan procedures and improve flaw-height estimates. For this research, a series of permutations on selected flaws were performed to see how certain parameters affect the accuracy in sizing flaw height. In addition, an analysis on how beam spread leads to flaw sizing inaccuracies was also conducted as part of this work.
  • Evaluation of a Permeable Dam as an Erosion Control Structure on Coca River, Ecuador

    Abstract: The effort performed here describes the process to evaluate the scour-protection performance of the proposed permeable dam. The US Engineer Research and Development Center, Coastal and Hydraulics Laboratory, built a 1:50 Froude scaled movable bed section model of the permeable dam structure and tested in a specialized flume that simulates regressive erosion propagation. Profiles were collected at various times to track the progression of the scour. Tests evaluated variations of the proposed structure, which included tetrapods, riprap, bridge piers, and longitudinal piles. For the various proposed alternatives, a total of six tests were conducted. The collected profiles show the ability or inability of each alternative and its associated performance. From this analysis, untethered tetrapods could not effectively arrest the local scour around the structure. However, large rock along with invert control stopped the regressive erosion and held the upstream grade.
  • Old River Control Complex (ORCC) Low Sill: A Literature Synthesis

    Abstract: The US Army Corps of Engineers (USACE), New Orleans District (MVN), tasked the US Army Engineer and Research Development Center (ERDC) with assessing the condition of a grouted scour hole located at the southeast wall of the Old River Low Sill Structure (ORLSS) at the Old River Control Complex (ORCC) using noninvasive techniques, such as geophysical surveys and physical models. This special report (SR) combines a scientific literature synthesis of previous research with further geologic interpretation as a first step in the overall task assigned by MVN. The results discussed in this SR will be used to inform the interpretation of geophysical surveys, construction of physical models, and input for the slope stability analyses.