US Army Corps of Engineers
Engineer Research and Development Center Website

Results:
Tag: Military bases
Clear
  • Estimating the Density of Secretive, At-risk Snake Species on DoD Installations Using an Innovative Approach: IDEASS

    Abstract: The Department of Defense (DoD) expends considerable resources managing and conserving threatened, endangered, or at-risk snake species. Management for these species is often hampered by a lack of basic knowledge regarding their population size and trajectory. The low detectability of most snakes makes it difficult to determine their presence, or to employ traditional methods to estimate abundance. This work demonstrated a novel, simulation-based method, Innovative Density Estimation Approach for Secretive Snakes (IDEASS), for estimating snake density based on systematic road surveys, behavioral observations of snake movement, and spatial movement (radio telemetry) data. This method was used to generate meaningful density estimates for two rare and cryptic snakes of conservation concern, the Southern Hognose and Eastern Diamondback Rattlesnake, at Fort Stewart, Georgia. IDEASS was also applied to an existing dataset to retroactively estimate density of a more common species of management concern, the Western Ratsnake, at Fort Hood, Texas. In all three cases, traditional density estimation via visual surveys and capture-mark-recapture (CMR) failed completely due to lack of captures and re-captures, despite extensive field effort. We conclude that IDEASS represents a powerful tool, and in some cases the only viable method, for estimating density of secretive snakes.
  • The Demonstration and Validation of a Linked Watershed-Riverine Modeling System for DoD Installations – Patuxent Watershed, Maryland

    Abstract: This work evaluated a linked watershed and riverine modeling system for the Patuxent River Watershed, Maryland against observed field data and model output from a watershed model. The performance objectives were computed for streamflow, sediment, total phosphorus, orthophosphorus, total nitrogen, ammonium, and nitrate using daily and monthly average model predictions and measured data. Hydrological Simulation Program – Fortran (HSPF) was used to compute runoff, sediment, and nutrient loadings, whereas the Hydrologic Engineer Center – River Analysis Sys-tem (HEC-RAS) was used to evaluate in-stream flow, channel sedimentation, and the fate/transport of nutrients. Model results were successful for calibration, validation, and management scenario analysis. Contaminants were not simulated for this watershed due to a lack of observed data to compare against. The study identified two implementation issues. First, while the Patuxent River did not experience dry bed conditions, where a stream may be intermittent, one can incorporate a very narrow slot at the low point in the cross-section to numerically keep the channel wet during very low flows. Second, to set up the linked model, there needs to be more observed water quality data to better constrain the HSPF output being used as boundary conditions to the HEC-RAS model.
  • Comparison of Antifungal Efficiencies of Photocatalytic and Antimicrobial-Infused Coatings: Evaluation of Five Antimicrobial Coatings Using Standard Test Methods

    Abstract: New buildings are being constructed and existing buildings retrofitted to be more energy efficient to meet increasingly stringent Department of Defense (DoD) energy standards. Although these standards save energy and lower operational costs, they also limit fresh air within a structure and can cause a buildup of harmful substances in indoor environments. Of particular concern are molds, which can put building occupants at risk and damage infrastructure. One possible solution to this increasing Army problem is to coat building materials with photocatalytic paints, which have the ability to both destroy microorganisms as well as the toxic byproducts they produce. This work compared two next-generation photocatalytic coatings against three more traditional antimicrobial-infused coatings for their ability to resist fungal contamination using three accelerated test conditions. Under each test condition the photocatalytic coatings were found to perform poorly compared to the antimicrobial-infused coatings. Moreover, the control coating, which contained no active antimicrobial (standard latex paint), performed as well as or better than all the antimicrobial coatings tested. This suggested that there may be little benefit to using antimicrobial coatings to inhibit fungal colonization over a standard latex paint; however, further testing is required to confirm this perception.
  • Autonomous Vehicle Pilot at Joint Base Myer-Henderson Hall: Project Report Summary and Recommendations

    Abstract: Military installations serve as strategic staging areas that are integral to national security. The Army is currently reconsidering how it views its installations as part of the battle space under multi-domain operations, which includes technology modernization efforts, such as the rapidly expanding field of connected and autonomous vehicle (CAV) technology. The DoD community and military installations have an interest in investigating autonomous transportation systems to determine their potential role in a broad range of military applications. CAVs capture, store, and analyze tremendous amounts of data. Military installations need to understand the data systems and processes involved in CAV deployments. To that end, the Army is conducting pilot projects that deploy updated and commercially-available CAVs on installations and within adjacent com-munities to further demonstrate their use and conduct research and development to optimize and inform the integration of this emerging technology. This report documents the deployment of Autonomous Vehicle (AV) technologies at Joint Base Myer-Henderson Hall for a 90-day pilot study to evaluate a commercially-available AV.
  • PUBLICATION NOTICE: Water Security Scenarios: Planning for Installation Water Disruptions

    Abstract: The Army’s critical missions are at risk from interruption of water supplies. Sufficient amounts of high- quality potable water are a resource without substitute. The Army’s Installation Energy and Water Security Policy establishes requirements for installations to sustain critical mission capabilities and to mitigate risks posed by energy and water disruptions that affect installations; this includes coordinating vulnerability and risk assessments of potential disruptions and implementing adequate responses to mitigate identified risks. Resilient installations will develop storage capacity to forestall water shortages and will also have short- and long-term plans to help the installation recover from events and forestall progressing to more severe deficits. This project supports compliance with the water security policy by exploring the range of conditions and responses possible across installations. Multiple scenarios were developed to explore how a 14-day interruption in water supply might affect an installation and to provide preliminary guidance to help installations develop strategies to address water disruptions to critical missions drawing from existing processes used in mission assurance. Researchers investigated types of installations and classes of scenarios most relevant to installation water security planning and explored several scenarios to provide a framework to helps installations advance their water resilience and security planning.
  • PUBLICATION NOTICE: Army Installation Makerspaces in the Morale, Welfare, and Recreation (MWR) Operational Environment: A Business Case Analysis

    Abstract:  This work demonstrated the implementation of makerspaces, collaborative workspaces that provide hands-on learning to help prepare the future workforce with critical 21st century applied-technology skills. Researchers from the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) enhanced and evaluated the pre-existing makerspace at Fort Bliss, Texas to demonstrate the value of a makerspace within the military Morale, Welfare, and Recreation (MWR) environment. The 8-month pilot demonstration, conducted from May to December 2018, focused on investigating program characteristics such as usage trends, optimal locations, equipment, and personnel access. Results from the demonstration indicated that enhanced makerspaces with high quality equipment had a positive Soldier impact. The business case analysis determined that the Fort Bliss Makerspace fits the criteria of, met the 15% cost-to-revenue ratio threshold for, and can operate successfully as, a Category Type A (Mission Sustaining) program asset.
  • PUBLICATION NOTICE: Full-Scale Testing of Commercially Available Cementitious Backfill and Surface Capping Materials for Crater Repairs

    Abstract: The Air Force Civil Engineer Center (AFCEC) Rapid Airfield Damage Recovery (RADR) program currently utilizes rapid-setting flowable fill (RSFF) and rapid-setting concrete (RSC) for backfilling and capping crater repairs. These materials have been proven successful through many full-scale tests, troop demonstrations, and live flight trafficking. However, only one proprietary product is currently approved for each material. Two candidate capping materials and one backfill material were evaluated by conducting simulated crater repairs and collecting appropriate data. For capping products, both small (8.5 ft x 8.5 ft) and large (15 ft x 15 ft) repairs were conducted and trafficked with simulated F-15E aircraft traffic. For the backfill material, three small repairs were backfilled and the California Bearing Ratio (CBR) was estimated at cure times of 0.5, 2, and 24 hr. Overall, repairs capped with Western Materials Fastrac 246 failed after only 2,000 passes, so the material is not currently recommended for approval. Repairs capped with Buzzi Unicem Ulti-Pave3® were able to sustain 3,500 passes before trafficking was ceased, so this material is recommended for approval as a crater repair capping material. CTS rapid-setting flowable fill backfill exhibited lower than expected CBR values and did not allow timely percolation of mix water, so it is not currently recommended for approval at this time.
  • PUBLICATION NOTICE: Effects of Boric Acid and Water Content on Fundamental Properties of Proprietary Magnesium Phosphate Cement (MPC) Products

    Abstract: Magnesium phosphate cements (MPCs) have been used for decades in proprietary products for pavement repairs. However, products with high exothermic temperatures have short working times, and research is needed to overcome these unfavorable characteristics. The effects of different boric acid and water contents on the fundamental properties of concrete was investigated through 34 trial batch modifications on the following commercially available MPC products: (1) Premier Magnesia’s PREMag PGDM, (2) BASF Master Builder’s MasterEmaco T545, and (3) CeraTech Inc.’s Pavemend TR. Overall results indicated that the increase of boric acid and water content produced favorable decreased temperatures and increased set times but retardation in the early age development of compressive strength. Modifications in the PREMag PGDM product resulted in poor workability, inaccurate time of setting due to a thixotropic nature, and unacceptable compressive strength loss. The Pavemend TR product was significantly affected by the addition of boric acid resulting in nonrecoverable compressive and bond strength loss, excessive expansions, failure at low freezing and thawing cycles, and unacceptable times of setting for rapid-repair applications. The T545 product showed promising performance with 28-day recovery in compressive, flexural, and bond strengths and minimal differences in other properties when compared to the control mixture.
  • PUBLICATION NOTICE: Laboratory Characterization of Rapid-Setting Flowable Fill

    Abstract: Utility Fill One-Step 750® is a rapid-setting flowable fill product that has previously been validated in numerous full-scale demonstrations as an expedient backfill solution for Rapid Airfield Damage Recovery. Although the field performance of Utility Fill One-Step 750® has been extensively documented, a full laboratory characterization has not been conducted. This report analyzes and documents results from several laboratory tests conducted at two water to-product ratios. The tests conducted are based on the suite of tests that make up the triservice spall repair certification program used for rapid-setting concrete products. Tests include strength and set time-related properties, typical parameter control tests for concrete, and tests to determine the mineralogy and chemical makeup of the material. Long-term expansion and contraction properties were also tested. The data presented herein are intended to provide an overall assessment of Utility Fill One-Step 750® and to provide reasonable estimates of various design parameters. The results can be used as a basis for the future development of a formal laboratory certification protocol to down-select other rapid-setting flowable fill products for further evaluation.
  • PUBLICATION NOTICE: Feasibility Investigation of Inductive Heating of Asphalt Repair Materials

    Abstract: Airfield pavement repairs conducted as part of rapid airfield damage recovery (RADR) activities must utilize suitable materials to reduce the need for subsequent repairs in order to maintain an operable pavement surface. For asphalt concrete pavements, hot mix asphalt (HMA) is typically used, but this requires a fairly large operation and is less practical for small repairs (e.g., small munitions damage, potholes). Instead, cold mix asphalt (CMA) is typically used for small repairs; however, its performance under aircraft loads is generally unacceptable.  The objective of this project was to investigate the feasibility of rapidly heating small-repair quantities (e.g., 5 gal buckets) of asphalt mix to hot mix temperatures in a matter of minutes. This objective was met using 15% steel aggregate by volume to produce an inductive HMA (iHMA) that could be heated from ambient to 320°F in approximately 5 min. This technology was demonstrated at full scale with a prototype field induction heater; iHMA patch repairs were subjected to simulated F-15E traffic and exhibited comparable rutting resistance to conventional HMA, which was considerably improved relative to CMA. Overall, iHMA was found to be a feasible repair material and should be considered for additional refinement and eventual implementation.

News Release Archive