Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Initial Rearing, Release, and Establishment of Biological Control Agent Pseudophilothrips ichini to Control Brazilian Peppertree (Schinus terebinthifolia) in South Texas Ecosystem Restoration Projects

    Abstract: Control of the invasive Brazilian peppertree (Schinus terebinthifolia) is a major cost component of US Army Corps of Engineers (USACE) ecosystem restoration (ER) projects in South Texas, specifically the USACE Galveston district (SWG) Resacas at Brownsville, Texas, ER Project. Biological control has been developed as a sustainable tool to lower long-term weed management costs. Although a biological control program for S. terebinthifolia has been in operation in Florida since 2019, no similar program existed in Texas until initiated by the Engineer Research and Development Center (ERDC) in 2020. Since 2021, the biological control agent Pseudophilothrips ichini has been reared at ERDC. This technical report details rearing, release, and establishment efforts from fall 2020 to spring 2023 to provide control of S. terebinthifolia in South Texas USACE ER project locations. Initial observations on impact and potential limitations to biological control in hot climates such as those of South Texas are also discussed.
  • Impacts of Invasive Species on Populations of Federally Listed Species on US Army Corps of Engineers Project Lands

    Abstract: The US Army Corps of Engineers (USACE) is mandated to meet federal, state, and local environmental laws and organizational regulations pertaining to the protection and conservation of ESA (Endangered Species Act 1973)-listed species and associated critical habitats. USACE is also mandated under Executive Order 13112 to document the presence and status of invasive species on their lands. We examine the status of 50 ESA–listed species prioritized by USACE expenditures for ESA compliance from 2014 to 2018. We review the status of invasive species and assess any evidence from published US Fish and Wildlife Service (USFWS) or National Marine Fisheries Service recovery plans or other government documents that indicate whether invasive species are negatively impacting the status of ESA–listed species on USACE lands. We found that 18 of 50 (36%) USFWS recovery plans for these 50 listed species specifically mention invasive species as a primary factor leading to the species’ decline and listing, or they note the need for management and control of invasive species to meet proposed recovery goals. USACE will need to work collaboratively with other federal and state agencies, universities, and nongovernmental organizations to improve control of invasive species and management and recovery of ESA–listed species.
  • Comparing Ecological Models for Assessing Rio Grande Silvery Minnow Response to Environmental Flows

    Abstract: The proliferation of continuous streamflow monitoring and spatial data suitable for hydraulic modeling is increasing opportunities to use hydraulic habitat analysis to inform ecological models. However, species population and streamflow data exhibit high variability, making it challenging to identify hydrologic and hydraulic metrics that effectively correlate with ecological outcomes. Metric selection presents a challenge for informing environmental flow decisions and adaptive management of water infrastructure. This study applies models to characterize environmental flows with in-creasing model complexity, including the use of hydraulic models to estimate suitable habitat areas at a given flow. The results are compared to field-measured fish outcomes over the same period using functional data analysis. The variance in model correlation with ecological outcomes aids in identifying the most effective environmental flow parameters while also indicating potential pitfalls from increasing model complexity. This analysis demonstrates techniques that synthesize environmental flows with available habitat analysis and validates the approach. The case study is based on the Rio Grande silvery minnow (Hybognathus amarus, minnow), an endangered fish species in the Middle Rio Grande. Analysis focused on different methods to quantify spring runoff coinciding with the inundation of floodplain nursery habitat necessary for the minnow’s larval and juvenile life stages.
  • Beneficial Use of Dredged Material in the Atlantic Intracoastal Waterway: Approaching the Regulatory Process

    Purpose: Following the Chief of Engineer’s January 2023 goal to expand the beneficial use of dredged material (BUDM), the US Army Corps of Engineers (USACE) strives to apply new and creative ways to increase utilization of dredged materials from a historic 30%–40% to 70% by 2030. As USACE Savannah District (SAS) increases BUDM efforts, a critical component of this transition is understanding and navigating the regulatory requirements. This Technical Note outlines the regulatory process for placement of dredged material in Georgia, identifies challenges and institutional barriers, and offers potential solutions to streamlining the overall process. By increasing the ease of navigating the regulatory process, USACE can facilitate an increase in BUDM and Engineering with Nature® (EWN®) projects in Georgia, and potentially other projects employing nature-based solutions (NBS). While regulatory details may vary from state to state, the Georgia example presented here can serves as a road map for the general types of regulatory procedures and potential hurdles found nationwide.
  • Lessons in Rearing Mealworms for Plastics Degradation

    Purpose: The primary objective of this research is to determine if plastics-degrading gut bacterial communities from a nonoptimal insect host can be successfully transplanted into the gut of the optimal mealworm host for large scale composting. To achieve this goal, foundational questions about basic mealworm husbandry needed to be addressed, including proper housing and feeding regimes, expected plastics degradation rates, and survivability on plastics as a food source. This technical note serves as a mealworm husbandry protocol and a guide for lessons learned in the early stages of experimentation dealing with establishment of plastics-degrading mealworm colonies.
  • Engineering With Nature: An Atlas, Volume 3

    Abstract: Engineering With Nature: An Atlas, Volume 3 showcases EWN principles and practices “in action” through 58 projects from around the world. These exemplary projects demonstrate what it means to partner with nature to deliver engineering solutions with triple-win benefits. The collection of projects included were developed and constructed by a large number of government, private sector, nongovernmental organizations, and other organizations. Through the use of photographs and narrative descriptions, the EWN Atlas was developed to inspire interested readers and practitioners with the potential to engineer with nature.
  • Interlaboratory Study of Polyethylene and Polydimethylsiloxane Polymeric Samplers for Ex Situ Measurement of Freely Dissolved Hydrophobic Organic Compounds in Sediment Porewater

    Abstract: We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane and low-density polyethylene polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately one month or more. For Cfree results, intralaboratory precision was high for single compounds; most PAHs and PCBs variability was low. Variability was higher for most hydrophobic PAHs, PCBs, and naphthalene, which were present at low concentrations and required larger PRC-based corrections. Intra- and interlaboratory variability between methods was low. Cfree polymer equilibrium was achieved in approximately one month during active exposures, suggesting using PRCs may be avoided for ex situ analysis using comparable active exposure; however, such testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs averaged within a factor of 2 compared with concentrations in isolated porewater; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. Cfree results were similar for academic and private sector laboratories. The accuracy and precision demonstrated for determinating Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence.
  • Rolling Prairie, Minnesota, Beneficial Use Area: A 100-Year Plan for Multiuse Land Management and Restoration Using Dredged Sediment

    Purpose: Inland waterway dredged sediment management is challenged by a lack of capacity in existing dredged material confined disposal facilities (CDFs) and a lack of available land to place sediment near frequently dredged navigation channels. Navigation operation and maintenance (O&M) dredging, material management, and coordination costs are increasing, and alternative long-term solutions are required. In response, the US Army Corps of Engineers (USACE), St. Paul District has addressed the challenge by investigating regional sediment management and beneficial use of dredged material when updating navigation pool–specific dredged material management plans (DMMP). The recently completed Pool 5 DMMP planning identified a 950 acre (384 ha)[1] placement site consisting of several land parcels available from willing sellers that will accommodate a “100-year plan” for dredged material management (USACE 2019). This technical note describes the multiple-use site plan that creates sand prairie and wetland habitat, provides public access to sand stockpiles, and implements agriculture studies with the University of Minnesota to evaluate the benefits of dredged material (i.e., sand) amendments in alluvial cropland soils, which has not been widely investigated. The Rolling Prairie site will demonstrate benefits of “distributed DMMPs” in which thin-layer placement on agricultural land near dredging locations can supplement traditional disposal methods. It also shows the advantage of having a large placement site to achieve multiple objectives.
  • Business Continuity Management, Operational Resilience, and Organizational Resilience: Commonalities, Distinctions, and Synthesis

    Abstract: The concepts of business continuity management, operational resilience, and organizational resilience each refer to actions that businesses and organizations can take in anticipating and responding to disruptions. However, the existing definitions and usages are difficult to differentiate due to overlapping objectives, implementation processes, and outcomes. This article examines definitions and approaches for these three concepts and suggest a framework to operationalize methods and tools relevant to each. These definitions emphasize three dyads: risk versus resilience; organizational processes versus assets; and normal operating conditions versus crisis conditions. Using these dyads to differentiate the concepts of business continuity management, operational resilience, and organizational resilience can support planners in clarifying objectives and identifying which approach will be most beneficial as businesses or organizations plan for and encounter disruptions. This article evaluates these concepts by examining illustrative examples of disruptions and responses.
  • Properties and Mechanisms for PFAS Adsorption to Aqueous Clay and Humic Soil Components

    Abstract: The proliferation of poly- and perfluorinated alkyl substances (PFASs) has resulted in global concerns over contamination and bioaccumulation. PFAS compounds tend to remain in the environment indefinitely, and research is needed to elucidate the ultimate fate of these molecules. We have investigated the model humic substance and model clay surfaces as a potential environmental sink for the adsorption and retention of three representative PFAS molecules with varying chain length and head groups. Utilizing molecular dynamics simulation, we quantify the ability of pyrophyllite and the humic substance to favorably adsorb these PFAS molecules from aqueous solution. We have observed that the hydrophobic nature of the pyrophyllite surface makes the material well suited for the sorption of medium- and long-tail PFAS moieties. Similarly, we find a preference for the formation of a monolayer on the surface for long-chain PFAS molecules at high concentration. Furthermore, we discussed trends in the adsorption mechanisms for the fate and transport of these compounds, as well as potential approaches for their environmental remediation.