Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Regeneration Dynamics of Bottomland Hardwood Sites Following Prolonged Growing-Season Inundation

    Abstract: The spring flood of the Mississippi River and backwater areas in 2019 resulted in large-scale flooding and was the longest-lasting flood event since the Great Flood of 1927. This flood event provided a rare opportunity to establish permanent plots in batture and backwater habitats to evaluate forest-stand dynamics following prolonged flooding. In this study, we evaluated postflooding conditions of forest overstory, midstory, and regeneration by establishing permanent plots at four locations subjected to varying amounts of flooding within the Mississippi River batture and the Yazoo–Mississippi Delta backwater region. Our results highlight oak regeneration success following the 2019 flood event as well as the utility and need to establish and monitor permanent plots to increase our understanding of floodplain forest dynamics in regions experiencing prolonged riverine flooding during the growing season.
  • Qualitative Habitat Evaluation Index for Louisville Streams (QHEILS)

    Purpose: Urban stream restoration typically involves multiple objectives addressing different aspects of ecosystem integrity, such as habitat provision, geomorphic condition, watershed connectivity, water quality, and land-use change. Multiple stream assessment tools and models have been developed and applied to inform restoration prioritization, planning, and design. Here, we present the Qualitative Habitat Evaluation Index for Louisville Streams (QHEILS, pronounced “quails”), which was designed as an interdisciplinary assessment method for urban streams in the Louisville, Kentucky, metropolitan region. The model adapts a regional habitat assessment procedure, the Qualitative Habitat Evaluation Index (QHEI), by incorporating additional processes related to geomorphic change and watershed connectivity. The QHEILS was developed in the context of the Beargrass Creek Ecosystem Restoration Feasibility Study, and it provides a rapid procedure for assessing multiobjective benefits associated with proposed restoration actions. This technical note summarizes the model and provides example applications within the Beargrass Creek watershed.
  • Environmental DNA (eDNA) Assays for the Detection of Ridgway’s Rail (Rallus obsoletus) in the United States

    Abstract: We designed two novel environmental DNA (eDNA) assays for the detection of Ridgway’s Rail (Rallus obsoletus), and successfully validated each assay using eDNA samples collected from the species’ known distribution within the United States. These assays add to the suite of tools available for the monitoring of this rare and secretive marsh bird, and may help to further elucidate its movement patterns as well as identify important migration corridors. Observed sensitivity of the assays indicates exceptional performance, with limits of detection at ≤ 8 copies of the target eDNA fragment per reaction. Our publication adds to the growing body of literature supporting eDNA surveys as viable tools for bird monitoring endeavors.
  • A Study of Phased-Array Ultrasonic Testing (PAUT) for Detecting, Sizing, and Characterizing Flaws in the Welds of Existing Hydraulic Steel Structures (HSS)

    Abstract: Hydraulic steel structures (HSS) are components of navigation, flood control, and hydropower projects that control or regulate the flow of water. Damage accumulates in HSS as they are operated over time, and they must be inspected periodically. This is often accomplished using nondestructive testing (NDT) techniques. If damage is detected, the structure’s fitness for continued service must be evaluated, which requires information on the location and size of discontinuities. This information can be obtained using ultrasonic testing (UT) techniques. However, there is limited information on the reliability of UT techniques with respect to detecting, sizing, and characterizing flaws in HSS. This study addresses this gap. Round-robin experiments were carried out using phased-array ultrasonic testing (PAUT) to scan weld specimens representing a variety of HSS geometries. The results of the round-robin experiments were analyzed to estimate the probability of detection (POD) and to assess the influence of factors potentially affecting POD. Uncertainty in estimates of flaw length and height were described, and partial safety factors were derived for use in fitness-for-service analyses. These results demonstrate the importance of the technician as a factor influencing the reliability of NDT techniques applied to HSS.
  • Flowering Rush Control in Hydrodynamic Systems: Part 2: Field Demonstrations for Chemical Control of Flowering Rush

    Abstract: A series of 10 water-exchange studies were conducted from 2019 to 2021 at two sites, Clover Island and Osprey Point, within the McNary Pool of the Columbia River on the Oregon-Washington border. Six of the studies incorporated a barrier curtain or bubble curtain, whereas the other four studies did not include any device to mitigate water exchange. Once annually, diquat aquatic herbicide was applied concurrently with rhodamine water tracing (RWT) dye at the Osprey Point site (2019–2021) to control flowering rush. An additional plot, Clover Island Reference, served as the nontreated control to the Osprey Point treatment plot. Pre- and posttreatment vegetation surveys were conducted in 2019, 2020, and 2021 to determine flowering rush control, treatment impacts to water quality, and nontarget species response. This study sought to (1) document the use of barrier curtains and bubble curtains as potential methods for reducing water exchange and increasing herbicide concentration exposure times within potential flowering rush treatment areas, (2) evaluate bulk water exchange and selective control of flowering rush under varying reservoir operations, and (3) use the results from these studies to provide guidance for managing submersed flowering rush infestations on the McNary Pool, Columbia River, and similar run-of-the-river impoundments.
  • Initial Rearing, Release, and Establishment of Biological Control Agent Pseudophilothrips ichini to Control Brazilian Peppertree (Schinus terebinthifolia) in South Texas Ecosystem Restoration Projects

    Abstract: Control of the invasive Brazilian peppertree (Schinus terebinthifolia) is a major cost component of US Army Corps of Engineers (USACE) ecosystem restoration (ER) projects in South Texas, specifically the USACE Galveston district (SWG) Resacas at Brownsville, Texas, ER Project. Biological control has been developed as a sustainable tool to lower long-term weed management costs. Although a biological control program for S. terebinthifolia has been in operation in Florida since 2019, no similar program existed in Texas until initiated by the Engineer Research and Development Center (ERDC) in 2020. Since 2021, the biological control agent Pseudophilothrips ichini has been reared at ERDC. This technical report details rearing, release, and establishment efforts from fall 2020 to spring 2023 to provide control of S. terebinthifolia in South Texas USACE ER project locations. Initial observations on impact and potential limitations to biological control in hot climates such as those of South Texas are also discussed.
  • Impacts of Invasive Species on Populations of Federally Listed Species on US Army Corps of Engineers Project Lands

    Abstract: The US Army Corps of Engineers (USACE) is mandated to meet federal, state, and local environmental laws and organizational regulations pertaining to the protection and conservation of ESA (Endangered Species Act 1973)-listed species and associated critical habitats. USACE is also mandated under Executive Order 13112 to document the presence and status of invasive species on their lands. We examine the status of 50 ESA–listed species prioritized by USACE expenditures for ESA compliance from 2014 to 2018. We review the status of invasive species and assess any evidence from published US Fish and Wildlife Service (USFWS) or National Marine Fisheries Service recovery plans or other government documents that indicate whether invasive species are negatively impacting the status of ESA–listed species on USACE lands. We found that 18 of 50 (36%) USFWS recovery plans for these 50 listed species specifically mention invasive species as a primary factor leading to the species’ decline and listing, or they note the need for management and control of invasive species to meet proposed recovery goals. USACE will need to work collaboratively with other federal and state agencies, universities, and nongovernmental organizations to improve control of invasive species and management and recovery of ESA–listed species.
  • Comparing Ecological Models for Assessing Rio Grande Silvery Minnow Response to Environmental Flows

    Abstract: The proliferation of continuous streamflow monitoring and spatial data suitable for hydraulic modeling is increasing opportunities to use hydraulic habitat analysis to inform ecological models. However, species population and streamflow data exhibit high variability, making it challenging to identify hydrologic and hydraulic metrics that effectively correlate with ecological outcomes. Metric selection presents a challenge for informing environmental flow decisions and adaptive management of water infrastructure. This study applies models to characterize environmental flows with in-creasing model complexity, including the use of hydraulic models to estimate suitable habitat areas at a given flow. The results are compared to field-measured fish outcomes over the same period using functional data analysis. The variance in model correlation with ecological outcomes aids in identifying the most effective environmental flow parameters while also indicating potential pitfalls from increasing model complexity. This analysis demonstrates techniques that synthesize environmental flows with available habitat analysis and validates the approach. The case study is based on the Rio Grande silvery minnow (Hybognathus amarus, minnow), an endangered fish species in the Middle Rio Grande. Analysis focused on different methods to quantify spring runoff coinciding with the inundation of floodplain nursery habitat necessary for the minnow’s larval and juvenile life stages.
  • Beneficial Use of Dredged Material in the Atlantic Intracoastal Waterway: Approaching the Regulatory Process

    Purpose: Following the Chief of Engineer’s January 2023 goal to expand the beneficial use of dredged material (BUDM), the US Army Corps of Engineers (USACE) strives to apply new and creative ways to increase utilization of dredged materials from a historic 30%–40% to 70% by 2030. As USACE Savannah District (SAS) increases BUDM efforts, a critical component of this transition is understanding and navigating the regulatory requirements. This Technical Note outlines the regulatory process for placement of dredged material in Georgia, identifies challenges and institutional barriers, and offers potential solutions to streamlining the overall process. By increasing the ease of navigating the regulatory process, USACE can facilitate an increase in BUDM and Engineering with Nature® (EWN®) projects in Georgia, and potentially other projects employing nature-based solutions (NBS). While regulatory details may vary from state to state, the Georgia example presented here can serves as a road map for the general types of regulatory procedures and potential hurdles found nationwide.
  • Lessons in Rearing Mealworms for Plastics Degradation

    Purpose: The primary objective of this research is to determine if plastics-degrading gut bacterial communities from a nonoptimal insect host can be successfully transplanted into the gut of the optimal mealworm host for large scale composting. To achieve this goal, foundational questions about basic mealworm husbandry needed to be addressed, including proper housing and feeding regimes, expected plastics degradation rates, and survivability on plastics as a food source. This technical note serves as a mealworm husbandry protocol and a guide for lessons learned in the early stages of experimentation dealing with establishment of plastics-degrading mealworm colonies.