Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Environmental Laboratory (EL)
  • Swan Island Resilience Model Development; Phase I: Conceptual Model

    Abstract: This report documents the development of an integrated hydrodynamic and ecological model to test assumptions about island resilience. Swan Island, a 25-acre island in Chesapeake Bay, Maryland, was used as a case study. An interagency, interdisciplinary team of scientists and engineers came together in a series of workshops to develop a simplified resilience model to examine the ability of islands to reduce waves and erosion and the impacts to nearby habitats and shorelines. This report describes the model development process and the results from this first key step: model conceptualization. The final conceptual model identifies four main components: vegetative biomass, island elevation, waves/currents, and sediment supply. These components interact to form and support specific habitat types occurring on the island: coastal dunes, high marsh, low marsh, and submerged aquatic vegetation. The pre-and post-construction field data, coupled with hydrodynamic ecological models, will provide predictive capabilities of island resilience and evaluations of accrued benefits for future island creation and restoration projects. The process and methods described can be applied to island projects in a variety of regions and geographic scales.
  • Strength and Toughness Inputs to Fitness for Service Analysis of Existing Hydraulic Steel Structures

    Abstract: The purpose of this effort is to describe a database containing information about the strength and toughness of steel used in existing hydraulic steel structures (HSS). The lack of information about these properties often presents a barrier to conducting fitness for service (FFS) analysis. The statistical dependence between strength and toughness variables and other database fields is evaluated to assess their potential as predictive variables.
  • Demonstration of an Autonomous Sailing Vessel for Monitoring Nearshore and Offshore Marine Environments

    Abstract: This technical note describes the US Army Engineer Research and Development Center (ERDC) application of an autonomous sailing vessel (ASV) to monitor water quality near underwater unexploded ordnance in Vieques, Puerto Rico, and the Center for Acoustics Research and Education, University of New Hampshire, application of the ASV to monitor the ocean soundscape along the Atlantic Outer Continental Shelf.
  • Invasive Species Costs to the USACE Navigation Business Line: A Demonstration Analysis in the Chicago District

    Abstract: Executive Order 13112 requires federal agencies to report invasive species costs to the National Invasive Species Counsel (NISC) annually. NISC then reports to Congress to increase awareness of invasive species and encourage inter-agency cooperation. Since 2005, the US Army Corps of Engineers (USACE) has provided an annual estimate for the Civil Works (CW) business lines. Traditionally, USACE estimates have been informed by broad assumptions, as many invasive species costs are not itemized. This study sought to develop a method to improve these estimates. A demonstration analysis was conducted for the Chicago District Navigation Business Line and was used to inform recommendations for a nation-wide analysis. The demonstration revealed invasive species-related costs represent about 0.2% ($64,000) of the district’s Navigation Business Line. Invasive species costs are subject to many variables, such as the type, prevalence, and impact of invasive species, as well as the number and type of navigation projects. The Chicago District results are not presumed to be indicative of other districts’ invasive species costs. Rather, the demonstration informed the development of an invasive species cost estimating method that can adapted for each CW business line, as well as variations in invasive species and projects across geographic regions. This report describes the demonstration analysis and presents a defensible framework for quantifying the costs of invasive species to the USACE CW program.
  • Incorporating Social and Environmental Outputs in Decision-Making: Workshop Outcomes

    PURPOSE: This document summarizes the notable outcomes of the workshop “Quantifying and Incorporating Social and Environmental Outputs in Decision-Making—Research and Development Needs and Strategy Workshop.” The workshop was held 24 and 25 July 2019 in Alexandria, Virginia, at the US Army Corps of Engineers’ (USACE) Institute for Water Resources (IWR). The workshop sought to identify gaps in knowledge, methods, data, and tools and to identify types of subject matter experts who would be needed for the research team. A total of 22 participants attended the facilitated workshop, representing a broad array of expertise: economists, scientists, planners, social scientists, project managers, and researchers from a number of USACE organizations and partnering academics across the United States. Together, these attendees reviewed existing policy and research and prioritized future work to fill gaps in methods and procedures for incorporating social and environmental inputs across a broad range of USACE projects.
  • Resilience in Distributed Sensor Networks

    Abstract: With the advent of cheap and available sensors, there is a need for intelligent sensor selection and placement for various purposes. While previous research was focused on the most efficient sensor networks, we present a new mathematical framework for efficient and resilient sensor network installation. Specifically, in this work we formulate and solve a sensor selection and placement problem when network resilience is also a factor in the optimization problem. Our approach is based on the binary linear programming problem. The generic formulation is probabilistic and applicable to any sensor types, line-of-site and non-line-of-site, and any sensor modality. It also incorporates several realistic constraints including finite sensor supply, cost, energy consumption, as well as specified redundancy in coverage areas that require resilience. While the exact solution is computationally prohibitive, we present a fast algorithm that produces a near-optimal solution that can be used in practice. We show how such formulation works on 2D examples, applied to infrared (IR) sensor networks designed to detect and track human presence and movements in a specified coverage area. Analysis of coverage and comparison of sensor placement with and without resilience considerations is also performed.
  • Financing Natural Infrastructure: Exploration Green, Texas

    PURPOSE: This technical note is part of a series collaboratively produced by the US Army Corps of Engineers (USACE)–Institute for Water Resources (IWR) and the US Army Engineer Research and Development Center (ERDC). It describes the funding process for Exploration Green, a large- scale community initiative that transformed a former golf course into a multipurpose green space with flood detention, habitat, and recreation benefits. It is one in a series of technical notes that document successful examples of funding natural infrastructure projects. The research effort is a collaboration between the Engineering With Nature® (EWN®) and Systems Approach to Geomorphic Engineering (SAGE) programs of USACE. A key need for greater application of natural infrastructure approaches is information about obtaining funds to scope, design, construct, monitor, and adaptively manage these projects. As natural infrastructure techniques vary widely by location, purpose, and scale, there is no standard process for securing funds. The goal of this series is to share lessons learned about a variety of funding and financing methods to increase the implementation of natural infrastructure projects.
  • Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020

    Abstract: This report presents the results of a long-term trend analyses of seasonal bird community data from a monitoring effort conducted on the Craney Island Dredged Material Management Area (CIDMMA) from 2008 to 2020, Portsmouth, VA. The USACE Richmond District collaborated with the College of William and Mary and the Coastal Virginia Wildlife Observatory, Waterbird Team, to conduct year-round semimonthly area counts of the CIDMMA to examine species presence and population changes overtime. This effort provides information on the importance of the area to numerous bird species and bird species’ groups and provides an index to those species and group showing significant changes in populations during the monitoring period. We identified those species regionally identified as Highest, High, and Moderate Priority Species based on their status as rare, sensitive, or in need of conservation attention as identified by the Atlantic Coast Joint Venture (ACJV), Bird Conservation Region (BCR), New England/Mid-Atlantic Bird Conservation Area (BCR 30). Of 134 ranked priority species in the region, the CIDMMA supported 102 of 134 (76%) recognized in the BCR, including 16 of 19 (84%) of Highest priority ranked species, 47 of 60 (78.3%) of High priority species, and 39 of 55 (71%) of Moderate priority species for BCR 30. All bird count and species richness data collected were fitted to a negative binomial (mean abundance) or Poisson distribution (mean species richness) and a total of 271 species and over 1.5 million birds were detected during the monitoring period. Most all bird species and species groups showed stable or increasing trends during the monitoring period. These results indicate that the CIDMMA is an important site that supports numerous avian species of local and regional conservation concern throughout the year.
  • A Fuzzy Epigenetic Model for Representing Degradation in Engineered Systems

    Abstract: Degradation processes are implicated in a large number of system failures, and are crucial to understanding issues related to reliability and safety. Systems typically degrade in response to stressors, such as physical or chemical environmental conditions, which can vary widely for identical units that are deployed in different places or for different uses. This situational variance makes it difficult to develop accurate physics-based or data-driven models to assess and predict the system health status of individual components. To address this issue, we propose a fuzzy set model for representing degradation in engineered systems that is based on a bioinspired concept from the field of epigenetics. Epigenetics is concerned with the regulation of gene expression resulting from environmental or other factors, such as toxicants or diet. One of the most studied epigenetic processes is methylation, which involves the attachment of methyl groups to genomic regulatory regions. Methylation of specific genes has been implicated in numerous chronic diseases, so provides an excellent analog to system degradation. We present a fuzzy set model for characterizing system degradation as a methylation process based on a set-theoretic representation for epigenetic modeling of engineered systems. This model allows us to capture the individual dynamic relationships among a system, environmental factors, and state of health .
  • Wave Attenuation of Coastal Mangroves at a Near-Prototype Scale

    Abstract: A physical model study investigating the dissipation of wave energy by a 1:2.1 scale North American red mangrove forest was performed in a large-scale flume. The objectives were to measure the amount of wave attenuation afforded by mangroves, identify key hydrodynamic parameters influencing wave attenuation, and provide methodologies for application. Seventy-two hydrodynamic conditions, comprising irregular and regular waves, were tested. The analysis related the dissipation to three formulations that can provide estimates of wave attenuation for flood risk management projects considering mangroves: damping coefficient β, drag coefficient CD, and Manning’s roughness coefficient n. The attenuation of the incident wave height through the 15.12 m long, 1:2.1 scale mangrove forest was exponential in form and varied from 13%–77%. Water depth and incident wave height strongly influenced the amount of wave attenuation. Accounting for differences in water depth using the sub-merged volume fraction resulted in a common fit of the damping coefficient as a function of relative wave height and wave steepness. The drag coefficient demonstrated a stronger relationship with the Keulegan–Carpenter number than the Reynolds number. The linear relationship be-tween relative depth and Manning’s n was stronger than that between Manning’s n and either relative wave height or wave steep