Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Advancements in Riverine Fish Movement Modeling: Bridging Environmental Complexity and Fish Behavior

    Abstract: Understanding fish movement and response in relation to their environment near infrastructure and migratory barriers is crucial for developing sustainable fisheries management solutions. Intermediate-scale movement models are a contemporary approach for understanding and predicting movement patterns of riverine fish considering their changing environment, which is predominately water flow. These models can be complex and require interdisciplinary knowledge. For more than 60 years, different approaches have been developed for investigating, reproducing, and predicting the movement outcomes of fish decision making. Due to the breadth of model frameworks available, a systematic review is helpful to summarize the available knowledge including a description of general model properties, environment modeling, agent characteristics, and methods of data use, output, and validation. The analysis of 38 studies found a wide range of model frameworks and architectures. Despite the lack of consistency, each model imposed some combination of the following behaviors: response to flow direction (i.e., rheotaxis), response to flow velocity magnitude, response to turbulence, response to depth, and memory/experience of the individual. There is a clear need for more consistent modeling approaches, increased consideration of memory/experience, inclusion of a wider range of species, incorporation of more detailed environmental covariates, and use of time-dependent solutions in fish movement models.
  • Habitat and Landcover Classification and Maritime Forest Restoration Recommendations for Deer Island, Mississippi

    Abstract: This report addresses two objectives: (1) an island-wide survey and mapping initiative to document habitat and landcover types present on Deer Island, Mississippi, and (2) an evaluation of forested resources on Deer Island along with recommendations to improve and expand the extent of maritime forests on the island. Diverse habitats were documented, including more than 30 distinct habitat and landcover types ranging from wetland marshes to maritime forests and sand ridges. The habitat and landcover survey (and accompanying maps) support ongoing and future ecosystem restoration activities, provides baseline data to conduct change analysis over time, and informs decision-making related to the management of the island’s natural resources. Additionally, the characterization of Deer Island’s forests documented a range of forest health conditions dictated by elevation gradients, soils, invasive species presence, and other factors. Collectively, the data presented inform ongoing planning efforts related to restoration activities on the island as well as future management opportunities to ensure Deer Island continues to provide ecological functions that benefit the community of Biloxi, Mississippi. The results and recommendations herein are broadly applicable to other barrier islands across the northern Gulf region and promotes additional research into the ecology of these unique coastal features.
  • Potential Engineering With Nature Features to be Incorporated at Woodtick Peninsula

    Purpose: Woodtick Peninsula is a barrier peninsula in western Lake Erie where restoration activities are being planned to combat erosion of the peninsula wetlands through placement of dredged material. As part of the restoration effort, design of an artificial reef is currently underway to function as a breakwater, preventing erosion of the fine-grained material being hydraulically placed along the west side of the peninsula. To the extent possible, it is desirable to design the reef such that it would not only provide erosion protection, but also incorporate features that would provide habitat, and thereby support the goals of Engineering With Nature® (EWN®). EWN is a concept focused on aligning natural and engineering processes to deliver economic, environmental, and social benefits efficiently and sustainably through collaboration. A range of breakwater and shoreline armoring alternatives have been utilized in coastal environments to enhance habitat. While a number of alternatives have been successfully demonstrated in marine waters, fewer structures have been adapted to freshwater systems of the Great Lakes. However, there have been several demonstrations within the Great Lakes in which breakwater structures have been enhanced to incorporate habitat features. In this report, potential designs for breakwaters and shoreline edging in freshwater systems that can incorporate EWN benefits are summarized.
  • Beneficial Use of Dredged Sediment in South St. Paul, Minnesota: 100 Years of Economic, Social, and Environmental Innovation

    Purpose: This technical note provides a review of beneficial use (BU) of dredged sediment in a 5-mile river reach of the Upper Mississippi River System (UMRS) that demonstrates the triple-win solutions championed by the US Army Corps of Engineers (USACE) Engineering With Nature® Program. Several case studies exemplifying the BU of dredged sediment are presented along with a more in-depth review of the Pigs Eye Lake Islands ecosystem restoration project.
  • Surveys in Native and Introduced Ranges (2018–2021) for Natural Enemies of Yellow Floating Heart, Nymphoides peltata Kunth

    Abstract: Yellow floating heart (Nymphoides peltata), a widespread aquatic invasive plant in the US, is currently under investigation for biological control de-velopment. From 2018 to 2021, we conducted native (Europe: 14 loca-tions; Asia: 80 locations) and introduced (US: 39 locations) range surveys to create a list of candidate agents and collect baseline infestation data for comparison. We genetically characterized populations and determined those most-closely related to US N. peltata were European. However, we found no promising agents in that region, except for previously reported fungal pathogens. In Asia, several herbivores were identified as potential agents based on observed damage in situ and previous literature reports about host specificity. These included three species of Bagous weevils, one of which may be Bagous charbenensi, and an unidentified leaf-mining Hy-drellia fly. During domestic surveys, generalist leaf-cutting caterpillars were common, similar to the native range. A major discovery was the dam-aging fungal pathogen, Septoria villarsiae, isolated from plants in a pri-vate pond in Maine—the first record in the Western hemisphere. The next steps for this program should include preliminary host specificity and im-pact assessments of S. villarsiae, the fruit-feeding Bagous spp. in China and Korea, and the leaf-mining Hydrellia sp. fly from South Korea.
  • Validation of Sample Extraction and Analysis Techniques for Simultaneous Determination of Legacy and Insensitive Munitions (IM) Constituents

    Abstract: Currently, no standardized method exists for the analysis of insensitive munitions (IM) in environmental matrices such as water, soils, and tis-sues. However, standardized methods, such as United States Environmental Protection Agency (EPA) 8330B, exist for legacy munitions for water and soil matrices. The lack of standardized methods for IM analysis leads researchers to use a wide variety of incomplete and overlapping analytical methodologies. The overall project’s first phase, Strategic Environmental Research and Development Program (SERDP) Environmental Restoration (ER)–2722, was to develop and optimize methods to address these methodological gaps by creating analytical methods for simultaneous analysis of IM and legacy munitions in water, soil, and tissue matrices. The main objective of the current project phase, Environmental Security Technology Certification Program (ESTCP) ER19-5078, is to build upon the previous work in phase one and to focus on the validation of the newly developed methods. Synergizing with the main objective of the overall project, the methods were validated and submitted to the EPA for inclusion as a possible addendum to EPA 8330B.
  • Case Study of Continental-Scale Hydrologic Modeling’s Ability to Predict Daily Streamflow Percentiles for Regulatory Application

    Abstract: Regulatory practitioners use hydroclimatic data to provide context to observations typically collected through field site visits and aerial imagery analysis. In the absence of site-specific data, regulatory practitioners must use proxy hydroclimatic data and models to assess a stream's hydroclimatology. One intent of current-generation continental-scale hydrologic models is to provide such hydrologic context to ungaged watersheds. In this study, the ability of two state-of-the-art, operational, continental-scale hydrologic modeling frameworks, the National Water Model and the Group on Earth Observation Global Water Sustainability (GEOGloWS) European Centre for Medium-Range Weather Forecasts (ECMWF) Streamflow Model, to produce daily streamflow percentiles and categorical estimates of the streamflow normalcy was examined. The modeled stream-flow percentiles were compared to observed daily streamflow percentiles at four United States Geological Survey stream gages. The model's performance was then compared to a baseline assessment methodology, the Antecedent Precipitation Tool. Results indicated that, when compared to baseline assessment techniques, the accuracy of the National Water Model (NWM) or GEOGloWS ECMWF Streamflow Model was greater than the accuracy of the baseline assessment methodology at four stream gage locations. The NWM performed best at three of the four gages. This work highlighted a novel application of current-generation continental-scale hydrologic models.
  • Human Well-Being and Natural Infrastructure: Assessing Opportunities for Equitable Project Planning and Implementation

    Abstract: There is consensus within psychological, physiological, medical, and social science disciplines that active and passive exposure to nature enhances human well-being. Natural infrastructure (NI) includes elements of nature that can deliver these ancillary well-being benefits while serving their infrastructure-related purposes and, as such, offer great promise for agencies including the U.S. Army Corps of Engineers as a means of enhancing economic, environmental, and societal benefits in civil works projects. Yet, to date, NI are typically framed as alternatives to conventional infrastructure but are rarely competitive for project selection because there is no standardized approach to demonstrate their value or justify their cost. The infrastructure projects subsequently selected may not maximize societal well-being or distribute benefits equitably. A framework is needed to capture diverse and holistic benefits of NI. As part of ongoing research, this paper describes the components necessary to construct a framework for well-being benefits accounting and equitable distribution of NI projects and explores how they might be applied within a framework. We conclude with methodological examples of well-being accounting tools for NI that are based on ongoing research and development associated with this project. The findings provide insights and support for both the Engineering with Nature community and the community of NI practitioners at large.
  • Toward Systemic Beneficial use of Dredged Sediments in San Pablo Bay: Demonstration of a Proposed Framework for Matching Sediment Needs with Dredging Requirements

    Abstract: Coastal wetlands provide a suite of valuable ecosystem services, but they are rapidly disappearing due to reductions in sediment supply and rising sea levels, making them ideal candidates for restoration through beneficial use of dredged sediment. Because sediment dredged from navigation channels is a limited resource relative to the number of degraded wetlands, a framework has been developed to align coastal restoration sediment needs with dredging requirements to maximize social, environmental, and flood risk reduction benefits while also completing the navigation mission. The framework is comprised of four key steps: (1) geographic scoping and suitability considerations, (2) quantification of the dredged sediment available and restoration project sediment needs, (3) definition of cost and benefit objectives, and (4) optimization of costs and benefits to determine the most efficient solutions. This report is a demonstration of this framework on a subset of wetland sites and local federal navigation channels in San Pablo Bay, California.
  • Pollinator Garden Playbook: Supporting the Western North American Population of Monarch Butterfly (Danaus plexippus) and the Endangered Smith’s Blue Butterfly (Euphilotes enoptes smithi) on Military Lands

    Abstract: The US Army Engineer Research and Development Center–Environmental Lab (ERDC-EL) researchers assisted the US Army Garrison Presidio of Monterey in 2021 to assess the feasibility of pollinator gardens at select locations in Monterey, California. The proposed pollinator gardens were to be designed to support the western population of the North American monarch butterfly (Danaus plexippus), the federally endangered Smith’s blue butterfly (Euphilotes enoptes smithi), and other pollinators found in the Monterey area. This technical report documents planning and design considerations for these pollinator gardens situated on the grounds of the Presidio of Monterey (POM) and the Ord Military Community (OMC). Site preparations, recommended plant species, garden designs, installation methods, and invasive species management are discussed. The contents herein can be used as a general playbook for similar pollinator habitat improvement projects on military lands.