Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Incorporating Ecosystem Goods and Services (EGS) into US Army Corps of Engineers (USACE) Project Planning: A Retrospective Analysis

    Abstract: Ecosystem goods and services (EGS) have been promoted as a way to effectively examine trade-offs and improve communication of project-related environmental outcomes in terms of human well-being. Notably, EGS provide a construct that seems capable of enhancing the capacity to communicate with stakeholders about how ecosystem restoration and rehabilitation activities can affect them—and in ways that are more meaningful to the public than the habitat metrics currently employed. The concept of EGS is not new to the US Army Corps of Engineers (USACE) Civil Works Program. This document presents a review of past attempts to apply EGS assessment techniques in the context of USACE project planning and then identifies obstacles met in those efforts that could be avoided in the future. This report is not intended to showcase approaches to consider EGS in planning studies. Rather, this paper uses case studies to illustrate the challenges of considering ecosystem services in the context of planning studies. These challenges will need to be addressed in any future applications of EGS assessments to USACE Civil Works Program decision-making.
  • Assessing the Validity and Accuracy of Wetland Indicator Status Ratings for Eight Species in Alaska Subregions

    Abstract: Preexisting ecological information and plant species occurrence data were used to determine the accuracy and validity of the present regional and subregional wetland indicator status ratings for eight species: Andromeda polifolia, Arctous rubra, Carex canescens, Rhododendron tomentosum, Rubus arcticus, Salix arctica, Salix pulchra, and Viola palustris. Technical documentation was developed to either (1) support the current National Wetland Plant List (NWPL) subregion boundaries and wetland indicator status ratings for the NWPL Alaska Region or (2) support a proposed change to the subregions or wetland indicator status ratings for the NWPL Alaska Region, for inclusion into the next NWPL update. The project developed repeatable, quantitative methods for assignment of wetland indicator status rating. Analyses included multiple correspondence analysis (MCA), analysis of similarities (ANOSIM), nonmetric multidimensional scaling (NMDS), and principal component analysis (PCA). Prevalence index (PI) was used as a numeric approximation of wetland status for comparing observations across subregions. A pilot study on S. pulchra data evaluated regional assignments by machine learning and assessed the feasibility of correlation network analysis and Louvain clustering for wetland indicator status rating assignment as dictated by co-occurring species. The methods developed for this Alaska-specific study may be applied to any future regional or subregional updates to the NWPL.
  • Upper Mississippi River Main Channel Sediment Placement: Purpose, Practice, Effects, and Recommendations

    Abstract: Dredged-sediment management in the Upper Mississippi River and Illinois Waterway is constrained by environmental factors and regulations that limit where sediment can be placed. Regulations regarding in-water sediment placement are not consistent among states. In-water placement should be promoted because it keeps sediment in the system and reduces costs for managing sediment dredged from the river. Studies investigating the environmental effects of in-water placement generally conclude that sand-on-sand placement has minimal effect on aquatic resources in the dynamic riverine environment. This report discusses in-water sediment management techniques, including flow- and sediment-regulating structures (i.e., dikes and wing dams) and a bed-load sediment collector by-pass system.
  • Restoration Monitoring Metric Framework: Integrating Innovative Remote-Sensing Technologies: Comparisons between Field and Remotely Sensed Vegetation Surveys of Restored Forested and Grassland Sites in Ohio

    Abstract: Restoration monitoring is generally perceived as costly and time-consuming, yet the concept of universal restoration monitoring metrics is trending for evaluation of restoration performance across spatial scales, project boundaries, and jurisdictions. Natural Resource Damage Assessment and Restoration (NRDAR) practitioners seek to restore natural resources injured by oil spills or hazardous substance releases into the environment. Therefore, a multiagency team [US Army Engineer Research and Development Center (ERDC), US Department of the Interior (DOI), and US Department of Energy (DOE)] developed and field-tested a multitiered monitoring framework, illustrating a range of field and remote-sensing techniques and methodologies. The restoration monitoring framework and field demonstration offer a unique methodology to acquire and evaluate simultaneously collected, multiscale/multiplatform data. The result of this research provides new insights to (1) assist planning, implementing, and monitoring restoration progress and effectiveness; and (2) apply common monitoring methods, endpoints, and metrics to other types of ecosystem restoration initiatives. Although the aim was to inform monitoring and management of areas that had been injured, these methods could also be used to inform restoration monitoring practices in a broader context, benefiting environmental stewardship missions of all project partners.
  • Conway Lake Ecosystem Restoration: Soil Investigations to Support Engineering With Nature and Beneficial Use of Dredged Sediment

    Purpose: The purpose of this Technical Note is to describe Conway Lake ecosystem restoration adaptive management investigations to evaluate forest planting and soil response to three depths of fine sediment placed over a sand base.
  • Improving Aquatic Placement Practices for Beneficial Use of Dredged Material in the Great Lakes

    Abstract: The Great Lakes Navigation System is an economically critical waterway. To maintain safe and navigable waterways, approximately 3–5 million yd3 (2.3–3.8 million m3) of sediments are dredged annually. The US Army Corps of Engineers (USACE) and others now recognize that beneficial use of these sediments can achieve positive economic, environmental, and social outcomes. However, historically less than 25% of dredged sediments have been beneficially used in the nearshore environment. Improvements are needed in dredged material management practices in the Great Lakes to achieve the goal of using 70% of dredged sediments beneficially by 2030. Therefore, to overcome these challenges this report reviews beneficial use of dredged material projects with the goal of improving and in-creasing beneficial-use-placement practices in the Great Lakes. Identified needs to advance beneficial-use placement in the Great Lakes include the following: (1) improved modeling of sediment-placement methods; (2) better documentation regarding the cost, benefits, and drawbacks of various placement methods; (3) demonstration of some sediment-placement techniques used successfully in other coastal environments; and (4) monitoring before and after conditions, particularly for sediments that contain greater than 10% fines. Several demonstration projects should be implemented to obtain information addressing the data gaps.
  • Literature Review of Microseira wollei Distribution, Environmental Drivers, and Risks: Lake St. Clair, Michigan, Case Study

    Abstract: Microseira wollei (formerly Lyngbya wollei) has grown to noxious densities within Lake St. Clair, located between Lake Erie and Lake Huron. De-spite the limited data on this cyanobacterium within Lake St. Clair, data exists for M. wollei within the Great Lakes region and in the southeastern United States, where water resource managers have been managing growths for decades. These data provide pertinent insights into the environmental distribution, environmental drivers, risks, and management of M. wollei, which is mainly distributed within eastern states and provinces in North America, from Canada to Florida. Environmental drivers may be site-specific and specific to the M. wollei population; therefore, the environmental drivers identified in this literature review are a starting point to inform further investigations. M. wollei within Lake St. Clair may pose risks to humans. Risks may originate from toxins, disinfection by-products, and, potentially, fecal indicator bacteria. M. wollei has the potential to produce a range of toxins; however, the most prevalent toxins are saxitoxins, a group of neurotoxins. This literature review will help the US Army Corps of Engineers Detroit District; Macomb County, Michigan; and other interested parties understand potential triggers for growth, communicate risks, and help develop an adaptive management framework.
  • Deployable Resilient Installation Water Purification and Treatment System (DRIPS): Relief Well Biofouling Treatment of Dams and Levees

    Abstract: The US Army Corps of Engineers (USACE) conducts regular inspections and maintenance of relief wells to ensure their proper functionality and to identify early signs of malfunction or potential failure. Expenses associated with labor, materials, and transportation are the primary cost drivers of relief-well maintenance. To minimize labor hours and materials, a treatment approach intended to improve logistics and reduce material costs during relief-well treatment was developed and tested. This approach employed external UVC, mechanical brush treatments, and chlorinated-gas-infused water to produce liquid sodium hypochlorite (NaClO). Preliminary bench-scale testing with chlorine, oxalic acid, and UVC informed the selection of field testing methods and optimal amendment concentrations. Field demonstrations were conducted annually over three years. During the demonstrations, the system underwent continuous optimization to enhance its efficiency. Different locations in Mississippi (Grenada Dam, Eagle Lake, and Magna Vista) were selected for testing. Both new and traditional treatment approaches yielded adequate results, achieving microbial reduction at 96% to 100%. The development and refinement of this system demonstrated that relief wells can be treated within a comparable timeframe and with similar efficiency while utilizing fewer purchased chemicals and materials.
  • Vegetation Establishment and Management in USACE Floodwater Detention Basins: Greens Bayou Flood Risk Management Mitigation Project

    Abstract: This report documents efforts by the US Army Engineer Research and Development Center (ERDC) in assisting the US Army Corps of Engineers (USACE) Galveston District (SWG) in native vegetation establishment design, propagation, installation, monitoring, and adap-tive management for the mitigation requirements of the Greens Bayou Flood Risk Management Project. Specifically, to provide (1) a vegetation establishment design ensuring development of sustainable native plant communities compatible with flooding and drought events; (2) suitable native aquatic, wetland, and woody plants for project use; (3) implementation of plantings; (4) monitoring and adaptive management; and (5) vegetation establishment reports and an operations and maintenance manual for long-term vegetation management of the project site. The Greens Bayou Project included approximately 3.7 miles of channel conveyance improvements and 138 acres of storm-water basin detention storage to reduce flooding damage by safely storing excess stormwater during heavy rain events and slowly releasing it back into the bayou. The completed basin was designed to hold approximately 1,400 acre-ft, or 538 million gal., of stormwater. Vegetation establishment, monitoring, and adaptive management efforts in the mitigation features discussed herein occurred between 2019 and 2023.
  • A Review of Habitat Modeling Methods That Can Advance Our Ability to Estimate the Ecological Cobenefits of Dredge Material Placement

    Abstract: Beneficial use of dredged material (BUDM) has been a placement strategy within the USACE for over 35 years, with applications that aim to reduce navigation costs, increase flood protection, and generate ecological benefits. However, the tools and approaches used for estimating ecological benefits are often limited in comparison with those available to evaluate costs and more traditional economic benefits when moving and placing dredged material. There are statistical and mechanistic models that can aid in quantifying habitat benefits within the context of BUDM projects, but there is currently no USACE-approved process that facilitates the integration of these modeling approaches. The purpose of this document is to provide a comprehensive review of existing habitat-centric statistical and mechanistic models that may aide the USACE in identifying models most appropriate for quantifying potential ecological benefits and trade-offs at placement sites.