Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Beneficial Use of Contaminated Sediments: A Review of Technical, Policy, and Regulatory Needs

    Abstract: This special report summarizes key results from the March 2024 Sediment Management Working Group (SMWG) Contaminated Sediment Beneficial Use Workshop sponsored by US Army Engineer Research and Development Center’s (ERDC’s) Advanced Materials and Substances of Emerging Environmental Concern (AMSEEC) center, a multilaboratory research collaborative reviewing solutions to environmental challenges, and the Dredging Operations Environmental Research (DOER) Program, the navigational dredging research arm of ERDC. The workshop focused on potential avenues for treatment and management of contaminated sediments to support expanded beneficial use (BU) opportunities. AMSEEC, with support from DOER, sponsored four pilot studies to advance the technical aspects of the workshop program and partnered with the SMWG, an industry consortium, to organize the workshop in Washington, DC. The workshop was attended by more than 75 practitioners and relevant stakeholders to review these pilot studies and the challenges of advancing treatment and management of contaminated sediment to support BU. This special report summarizes and prioritizes technical, regulatory, and policy needs to enable expanded BU opportunities for contaminated sediments.
  • A Multigenerational Exposure of the Zebrafish (Danio rerio) to PFOS

    Abstract: The ecological risk of PFOS in extended chronic and multigenerational exposures was quantified through survival, growth, reproduction, and vitellogenin (egg yolk protein precursor) responses as well as PFOS bioconcentration in zebrafish (Danio rerio). Fish were exposed to environmentally relevant PFOS concentrations through 180 days postfertilization (dpf) in the parental (P) and first filial (F1) generations and 16 dpf in the second filial (F2) generation. Survival decreased significantly in P and F2 generation exposures, but not F1, at the highest PFOS treatment. Significant adverse effects on body weight and length occurred predominantly at highest exposure treatment. Finally, PFOS had no significant effects on P or F1 egg production and survival or whole-body vitellogenin levels in P or F1 male fish. The present investigation indicated a threshold for ecologically relevant adverse effects in zebrafish at 119 μg/L (standard deviation [S.D.] 23 μg/L, n = 10) for survival and 87 μg/L (S.D. 48 μg/L, n = 19) for all statistically significant negative effects observed. Importantly, males had significantly increased PFOS accumulation and bioconcentration factors versus females in both P and F1 generations. PFOS transfer to eggs was not a depuration pathway. Finally, a toxicokinetic model was developed to reliably predict PFOS whole-body burdens.
  • An Investigation into the Correlation Between Selected Coastal Protection Indices and Percent Residual Dune and Berm Volumes Following Coastal Storms

    Abstract: Morphometric indices describe the dimensions of a dune and berm profile and can serve as relative metrics of coastal protection. However, coastal vulnerability to storm damage also depends on storm, wave, sediment, and offshore characteristics. Recently, more elaborate non-morphometric indices have been proposed in an effort to account for these other factors. This study compares the correlation between these morphometric and non-morphometric indices and one measure of coastal protection, the ability of a dune and berm profile to resist storm-induced changes in volume. This study uses a numerical-simulation approach rather than an empirical approach because a sufficiently comprehensive set of observational data does not exist. A randomized sample of dune and berm profiles were generated at eight coastal locations. Using the cross-shore numerical model (CSHORE), storm-induced changes in dune and berm volume were simulated for storms of low to moderate severity. The correlation between the various prestorm indices and the percentage of prestorm dune and berm volume remaining after the storm was calculated at each location. Results show that no single index always exhibits a higher correlation with percent dune and berm volume remaining. However, some indices were far more likely than others to produce higher correlations.
  • Gravel Investigations Informing Resource Management Within the Lower Mississippi River

    Abstract: This report integrates available information about gravel deposits within the Lower Mississippi River (LMR) from previous studies coupled with new analysis to identify reoccurring observed gravel locations. This study also summarizes spatial and temporal trends of bed material sediment characteristics, focusing primarily on gravel. Moreover, selected data sets from previous studies, and field and aerial observations have been added to a geographic information system (GIS) database housed in ArcPro to illustrate observed gravel locations. Last, a literature review documenting the ecological importance of gravel bars to riverine fauna and a brief discussion of potential technologies to support conservation efforts are included. Major findings summarized herein are (1) the presence of gravel deposits tend to decrease in a downstream direction along the LMR; (2) qualitative analyses of aerial videos suggest that gravel-predominant bars are more common between River Miles 953 and 681; (3) past investigations have documented gravel sizes at rivers bars ranging from pebbles to boulders; (4) the gravel content in LMR bed material samples has decreased since 1932; and (5) more detailed surveys are needed to better delineate the spatial extents and depth of gravel bars and identify suitable technology to detect potential buried gravel.
  • Relief Well Sustainment Deployable Resilient Installation Water Purification and Treatment System (RWS-DRIPS): Treatment of Relief Wells at Perry Dam, Kansas

    Purpose: This report details the treatment process and resulting outcomes for relief wells at Perry Dam (Jefferson County, Kansas) using the Relief Well Sustainment Deployable Resilient Installation Water Purification and Treatment System (RWS-DRIPS) treatment trailer. The RWS-DRIPS is a mobile treatment unit with comprehensive water treatment capabilities designed to disinfect surface and subsurface water with high efficiency. Immediately following treatment with the RWS-DRIPS unit, video monitoring was used to observe the condition of the relief wells. The results of that observation are described in this report.
  • Predicting Seagrass Habitat Suitability with Remote Sensing and Machine Learning: A Case Study in the Mississippi-Alabama Barrier Islands

    Abstract: Seagrass occupies sandy platforms landward of the Mississippi-Alabama barrier islands, where the benthos experiences consistent sediment transport. This work characterized benthos surrounding Cat Island, Mississippi, to assess the influence of elevation and geomorphological features (e.g., slopes, flats, peaks, and valleys) on seagrass presence. Two machine learning algorithms predicted seagrass presence/absence (from airborne hyperspectral imagery) based on elevation and geomorphology (derived from airborne lidar bathymetry) for 2016, 2018, and 2019. Results indicated elevation primarily influenced seagrass presence, with minimal impact from geomorphology. Elevation change was not predictive, suggesting seagrass tolerated observed deposition/erosion rates. This research showcases remote sensing and machine learning efficacy in predicting seagrass habitat suitability (greater than 70% accuracy) and conveys implications for conservation.
  • EWN Compass: Implementation Toolbox for Natural and Nature-Based Features

    Purpose: This Engineering With Nature® (EWN®) technical note introduces the EWN Compass: Implementation Toolbox for Natural and Nature-Based Features—a user-friendly, web-based application developed using Esri ArcGIS Online. Designed to support practitioners in selecting and integrating natural and nature-based features (NNBF) into infrastructure projects, the toolbox provides structured access to existing resources, case studies, and environmental data to inform resilient and sustainable design solutions.
  • Understanding Hurdles to Expanded Beneficial Use of Dredged Sediment: Stakeholder Perspectives

    Purpose: This technical note (TN) is the second in a series of investigative reports seeking pathways and opportunities to expand beneficial use (BU) of dredged material (DM). This TN summarizes the results of stakeholder outreach and feedback on perceptions about potential BU barriers to be overcome. The purpose of the study was to aid the US Army Corps of Engineers (USACE) dredging and DM management practices, specifically BU of DM (hereinafter BUDM), that USACE manages from various navigation channels and ports around the nation. Per the 28 January 2023 Chief of Engineers’ Command Philosophy Notice, USACE is aiming to achieve a goal of 70% BU by the year 2030 (HQUSACE 2023), hereinafter the Chief’s 70/30 goal.
  • Asset Condition and Probability of Failure Assessment–A Vision for Civil Works: A Document to Guide Collaboration and Innovation for the US Army Corps of Engineers Civil Works Asset Management System

    Abstract: The US Army Corps of Engineers (USACE) is rapidly improving its asset management system through a variety of research projects and other work efforts that focus on how risk, condition, and probability of failure are conceived, communicated, and used for decision-making across the agency. As these projects move forward, it is critical that USACE defines a long-term vision for condition and probability of failure assessments across the entire asset management system. This Special Report defines that vision with the goal of achieving consensus and buy-in from a variety of participants that will need to buy-in to achieve success. An additional benefit to identifying an end vision for this work is to identify collaborative opportunities and any gaps that must be addressed to achieve it.
  • State of Practice and Recommendations to Enhance Probability of Failure Estimates for Civil Works Infrastructure Components

    Abstract: As the US Army Corps of Engineers (USACE) continues to improve its asset management system, it is imperative that maintenance investments across its wide infrastructure portfolio are maximizing risk reduction. A key component of risk is probability of failure. Presently, USACE estimates probability of failure for asset components in a variety of ways across business lines, activities, and decision spaces. This document explores the variations in the state of practice for probability of failure estimates across USACE and contrasts them with available best practices and methodologies. The review found several key gaps between the state of practice and best practices, including a lack of component failure and life data useful for time-to-failure parameter estimates, a lack of codified definitions of failure, no clear and consistent guidance for probability of failure estimates across business lines or decision spaces, and no methodologies that account for environmental variation at a facility. These gaps are addressed by a research strategy that compares and contrasts several probability of failure calculation methods using presently available data, identifies relevant life data for future collection, and defines a framework for investing in improved probability of failure assessments at facilities.