Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Potential Benefits of Subaqueous Soil Data on Department of Defense Installations

    Purpose: Many domestic and international US Department of Defense (DoD) installations are located in coastal areas. Recent advances in the classification and mapping of subaqueous soils, which occur in shallow freshwater and marine environments, has the potential to benefit US military operations in several different ways. This technical note communicates the importance of subaqueous soil classification and describes how subaqueous soil information can inform the management of natural resources, infrastructure and transportation, mitigation of coastal storm risk, protection of the coast from natural threats, and the understanding of nearshore environments in the US and abroad.
  • Sensor Fusion for Aerial Robotic Systems

    Abstract: As uncrewed aerial vehicle (drone) use expands across industries so also does the complexity of sensor payloads. At present, there are no commercially available products for the management and fusion of multisensor data. Sensor Fusion for Aerial Robotic Systems (SFARS) is a sensor agnostic, modular platform for intelligent multisensor data fusion and processing. At the time of writing, SFARS exists as a root codebase, a PC application for processing of previously collected drone data and as a prototype hardware platform for real-time drone deployment. This report serves as a technical users guide to the design, development, and implementation of the suite of SFARS software.
  • Resilience and Efficiency for the Nanotechnology Supply Chains Underpinning COVID-19 Vaccine Development

    Abstract: Nanotechnology facilitated the development and scalable commercialization of many SARS-CoV-2 vaccines. However, the supply chains underpinning vaccine manufacturing have demonstrated brittleness at various stages of development and distribution. Whereas such brittleness leaves the broader pharmacological supply chain vulnerable to significant and unacceptable disruption, strategies for supply chain resilience are being considered across government, academia, and industry. How such resilience is understood and parameterized, however, is contentious. Our review of the nanotechnology supply chain resilience literature, synthesized with the larger supply chain resilience literature, analyzes current trends in implementing and modeling resilience and recommendations for bridging the gap in the lack of quantitative models, consistent definitions, and trade-off analyses for nano supply chains.
  • Living Shoreline in USACE Projects: A Review

    Abstract: The term living shoreline (LS) refers to the practice of shoreline stabilization using natural elements (e.g., vegetation, oysters, logs, etc.) in a way that maintains continuity and connectivity between terrestrial and aquatic habitats. This report provides a review of LS practices to assess the applicability of these engineering techniques for US Army Corps of Engineers (USACE) projects. Specifically, this review examines the current state of knowledge regarding LS efforts through evaluation of peer-reviewed literature, agency reports, web tools, applications, and relevant guidance. It is important to gain a deeper understanding of the potential ecological, engineering, environmental, and socioeconomic benefits in comparison with traditional gray infrastructure shoreline stabilization techniques. The National Oceanic and Atmospheric Administration (NOAA) encourages the use of LS as a shoreline stabilization technique along sheltered coasts (i.e., coasts not exposed to open ocean wave energy) to preserve and improve habitats and maintain their ecosystem services at the land–water interface. Research has examined aspects of LSs, but there are relevant knowledge gaps yet to be explored. Overall, there is a lot of information from different sources on LSs with limited application to USACE projects. Therefore, a consolidated planning and design consideration report specific to USACE is recommended.
  • Field Evaluations of Diquat for Controlling Submersed Flowering Rush in Lake Pend Oreille, Idaho

    Abstract: The invasive plant flowering rush (Butomus umbellatus L.) was first observed in Lake Pend Oreille, Idaho, within the Columbia River basin in 2008, and it covered several hundred hectares by 2016. Dense infestations of this perennial weed destroy native plant communities and seriously degrade fish and wildlife habitat. Sometimes growing as an emergent on saturated soils or in shallow water, the plant also forms persistent submersed stands in deeper water, which is the typical growth form in Lake Pend Oreille. In 2016, field trials evaluated the herbicide diquat dibromide, formulated as the product Reward, for controlling submersed flowering rush. A 4 ha plot in Oden Bay was treated with diquat at a rate of 18.7 L/ha in late summer 2016 and again in 2017 using a subsurface injection method by boat. Water exchange processes were measured in treated plots in 2017 with rhodamine WT dye mixed with the herbicide. Flowering rush shoots were reduced by 87% in 2016 and 29% in 2017. No adverse effects were measured on water quality (temperature, dissolved oxygen, pH, and conductivity). Diquat should be added to the project’s operational management strategy for controlling flowering rush in Lake Pend Oreille.
  • Ohio Creek Urban Coastal Storm Risk Management Project: An Application of Engineering With Nature® Principles in Practice

    Purpose: The Engineering With Nature® (EWN®) program within the US Army Corps of Engineers (USACE) funds research projects occurring in a myriad of environments, including in marine coasts, freshwater coasts, and fluvial (riverine) systems. Yet there have been fewer projects documented where EWN principles have been applied in urban landscapes, particularly to manage flood risk, a main civil works mission of the USACE. Natural hazards including increased flashiness associated with intense rainfall events have prompted the need for more sustainable infrastructure solutions that reduce flood risks in urban areas, especially when such solutions desired by stakeholders are nature-based solutions. This technical note documents a flood risk management project in Norfolk, Virginia, that incorporates EWN principles in a tidal estuary environment that not only reduces flood risk, but also provides numerous other environmental, social, and economic benefits.
  • Advancing a Framework for Rapid Assessment and Economic Valuation of Wild Pig Damage to Wetland Terrain: Year Two of Research at US Army Corps of Engineers Somerville Lake, Texas

    Abstract: Wild pigs significantly impact wetlands, yet a standardized method for quantifying and valuing this damage is lacking. This research aims to develop a user-friendly ecological-economic framework for rapid assessment of wild pig damage on wetlands, building on a pilot study conducted at Lake Somerville, Texas, in FY21. The FY22 project advanced methods to value the lost benefits provided by wetlands due to wild pigs and identified methods to adapt and refine the framework for broader application. Additionally, a 65% reduction in wild pig population was achieved by Texas Wildlife Services personnel through helicopter gunning at two treatment sites, which is estimated to have prevented further damage to wetlands.
  • VTIME Using ERDC as a Testbed with PLANNER

    Abstract: This technical note documents the outcome of a September 2023 workshop titled “VTIME using ERDC as a Testbed with PLANNER.” PLANNER exists as a prototype installation master planning tool, operating as an application using the Virtual Toolbox for Installation Mission Effectiveness (VTIME) as a platform. The objectives of the US Army Engineer Research and Development Center (ERDC) FLEX-4 project for VTIME using “ERDC as a Testbed” with PLANNER included modeling and analyzing ERDC facilities using the PLANNER prototype and assessing the feasibility of ERDC as a pilot site for inclusion PLANNER implementation. The workshop aimed to demonstrate PLANNER for ERDC personnel and showcase a new installation planning capability that intends to transform the way the Army performs installation master planning by digitalizing and operationalizing master planning.
  • Bacterial Remediation of Microsystin-HAB Toxins Utilizing Microcystinase (MlrA)

    Abstract: Microcystins are a class of hepatotoxins produced by some harmful algal bloom–associated cyanobacteria and are the most reported tox-ins in freshwaters. Their cyclic structure makes them resistant to conventional methods used in water treatment operations (boiling, chlorination, and UV treatment). Some bacteria can naturally degrade microcystins via the mlrABCD cluster, a pathway initiated by the primary enzyme microcystinase (MlrA). MlrA linearizes the cyclic microcystin, greatly reducing its toxicity. Protein fusion was employed to produce a recombinant MlrA enzyme fused to maltose-binding protein ([MBP] MBP-MlrA) and to evaluate long-term enzymatic stabilization and reconstitution for future applications. MBP-MlrA degraded cyclic microcystin in vitro and demonstrated stability across a range of biological pHs. At a concentration of 0.61 ng/µl in buffer, MBP-MlrA achieved and maintained an average degradation rate of approximately 101.95 µM/h/ng of protein across fifteen freeze/thaw cycles. Stability assays demonstrated that enzyme activity was preserved over 5 months at −20°C. Results also demonstrated the effectiveness of MBP-MlrA to linearize microcystin upwards of 55.59 µM/h/ng of protein at the bench scale in both buffer and various freshwater matrices. The presence of the linear metabolite is of concern regarding intermediate toxicity, and future studies to incorporate the MlrB peptidase are discussed.
  • Engineering With Nature: Integrating Plant Communities into Engineering Practices. A Guidance Manual

    Abstract: Applying native plant communities in environmental engineering practices can profoundly enhance the establishment and sustainment of natural ecosystems, which is imperative for the success of healthy habitats and the wildlife communities they support. The objective of this manual is to stimulate interest in applying native plants in a wide variety of settings, including inland, upland, coastal, riparian, and grassland. The information presented in this manual illustrates natural plant communities and sustainable strategies using native vegetation. This manual discusses the application of vegetation in US Army Corps of Engineers (USACE) projects. Additional case studies incorporate Engineering With Nature® (EWN®) principles into the design and development of existing infrastructural facilities within a military installation. Specifically, the manual identifies desirable plant species suitable for propagation in various states based on historic plant communities and ecological composition and lists invasive species to avoid with suggested native alternatives. Further, it discusses the use of native vegetation in biotechnical applications. Intended users are USACE districts, local, state, and federal agencies, contractors (specialists), and other users (generalists) engaged in EWN projects. Finally, the publication helps practitioners think creatively about using native plant species before, during, and after project design phases.