Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Technology
Clear
  • Ohio Creek Urban Coastal Storm Risk Management Project: An Application of Engineering With Nature® Principles in Practice

    Purpose: The Engineering With Nature® (EWN®) program within the US Army Corps of Engineers (USACE) funds research projects occurring in a myriad of environments, including in marine coasts, freshwater coasts, and fluvial (riverine) systems. Yet there have been fewer projects documented where EWN principles have been applied in urban landscapes, particularly to manage flood risk, a main civil works mission of the USACE. Natural hazards including increased flashiness associated with intense rainfall events have prompted the need for more sustainable infrastructure solutions that reduce flood risks in urban areas, especially when such solutions desired by stakeholders are nature-based solutions. This technical note documents a flood risk management project in Norfolk, Virginia, that incorporates EWN principles in a tidal estuary environment that not only reduces flood risk, but also provides numerous other environmental, social, and economic benefits.
  • Advancing a Framework for Rapid Assessment and Economic Valuation of Wild Pig Damage to Wetland Terrain: Year Two of Research at US Army Corps of Engineers Somerville Lake, Texas

    Abstract: Wild pigs significantly impact wetlands, yet a standardized method for quantifying and valuing this damage is lacking. This research aims to develop a user-friendly ecological-economic framework for rapid assessment of wild pig damage on wetlands, building on a pilot study conducted at Lake Somerville, Texas, in FY21. The FY22 project advanced methods to value the lost benefits provided by wetlands due to wild pigs and identified methods to adapt and refine the framework for broader application. Additionally, a 65% reduction in wild pig population was achieved by Texas Wildlife Services personnel through helicopter gunning at two treatment sites, which is estimated to have prevented further damage to wetlands.
  • LaGrange Lock and Dam, Illinois River: Navigation Approach Physical Model

    Abstract: A physical model study of the LaGrange Lock and Dam was conducted to optimize the navigation conditions for the new landside lock chamber design developed by the US Army Corps of Engineers–Rock Island District, Inland Navigation Design Center, and Stanley Consultants. A 1:120 Froude scale model was built to evaluate the navigation conditions for tows entering and exiting the upper and lower approaches. The final design consisted of a new 1,200 ft lock chamber located landward of the existing chamber. Data were collected to evaluate tow tracks and current direction and velocity information. Satisfactory navigation conditions were developed, and details are shown in the results section of this report.
  • VTIME Using ERDC as a Testbed with PLANNER

    Abstract: This technical note documents the outcome of a September 2023 workshop titled “VTIME using ERDC as a Testbed with PLANNER.” PLANNER exists as a prototype installation master planning tool, operating as an application using the Virtual Toolbox for Installation Mission Effectiveness (VTIME) as a platform. The objectives of the US Army Engineer Research and Development Center (ERDC) FLEX-4 project for VTIME using “ERDC as a Testbed” with PLANNER included modeling and analyzing ERDC facilities using the PLANNER prototype and assessing the feasibility of ERDC as a pilot site for inclusion PLANNER implementation. The workshop aimed to demonstrate PLANNER for ERDC personnel and showcase a new installation planning capability that intends to transform the way the Army performs installation master planning by digitalizing and operationalizing master planning.
  • Bacterial Remediation of Microsystin-HAB Toxins Utilizing Microcystinase (MlrA)

    Abstract: Microcystins are a class of hepatotoxins produced by some harmful algal bloom–associated cyanobacteria and are the most reported tox-ins in freshwaters. Their cyclic structure makes them resistant to conventional methods used in water treatment operations (boiling, chlorination, and UV treatment). Some bacteria can naturally degrade microcystins via the mlrABCD cluster, a pathway initiated by the primary enzyme microcystinase (MlrA). MlrA linearizes the cyclic microcystin, greatly reducing its toxicity. Protein fusion was employed to produce a recombinant MlrA enzyme fused to maltose-binding protein ([MBP] MBP-MlrA) and to evaluate long-term enzymatic stabilization and reconstitution for future applications. MBP-MlrA degraded cyclic microcystin in vitro and demonstrated stability across a range of biological pHs. At a concentration of 0.61 ng/µl in buffer, MBP-MlrA achieved and maintained an average degradation rate of approximately 101.95 µM/h/ng of protein across fifteen freeze/thaw cycles. Stability assays demonstrated that enzyme activity was preserved over 5 months at −20°C. Results also demonstrated the effectiveness of MBP-MlrA to linearize microcystin upwards of 55.59 µM/h/ng of protein at the bench scale in both buffer and various freshwater matrices. The presence of the linear metabolite is of concern regarding intermediate toxicity, and future studies to incorporate the MlrB peptidase are discussed.
  • Effects of Thermal Modification on the Flexure Properties, Fracture Energy, and Hardness of Western Hemlock

    Abstract: This study investigates the effect of thermal modification on the flexural properties, transverse fracture energy, and hardness of western hemlock. Flexure tests on specimens featuring longitudinal and transverse grains showed that thermal modification at 167 °C leads to less statistical variability compared to unmodified samples. Additionally, thermal modification leads to a decrease in the transverse flexural strength. On the other hand, the fracture and Janka hardness tests revealed a more pronounced brittleness of the thermally modified samples. The total mode I fracture energy of modified single-edge notch bending samples was about 47% lower for radial–longitudinal systems and 60% lower for tangential–longitudinal systems. Similarly, the average Janka hardness in the tangential and transverse planes was 8.5% and 9.4% lower in the modified specimens, respectively. The results presented in this work show that thermal modification can have a significant effect on the fracturing behavior of west-ern hemlock and its energy dissipation capabilities. For design, this must be taken into serious consideration as these properties significantly influence the damage tolerance of this wood in the presence of stress concentrations such as those induced in bolted joints and cut outs. Fracture energy and hardness are also strongly correlated to ballistic performance.
  • USACE Relief Wells for Dams and Levees: History and Current Practice

    Abstract: The purpose of this study was to review relief well practices within the United States Army Corps of Engineers (USACE). A literature review was performed on the history and use of relief wells relief and the state of practice within the USACE. As part of this study, a survey about relief well use and maintenance practice was prepared and distributed to selected Districts containing a large number of relief wells to determine their standard operating procedures for using those wells and to learn the history of their use. Responses obtained from these Districts were tabulated and classified according to the subject categories requested. Research needs and tools were requested as part of the survey, and a large portion of the responses indicated that there is an important need for research into biofouling prevention and remediation. Finally, a laboratory experiment was performed on several commercial-off-the-shelf sensors to measure effluent flow remotely. The results of the experiment showed that remote sensing of relief well flow is viable. It was found that pore pressures could be used to measure the relief well flows over a wide range of flow rates and with an error of 10 percent or less on average. Ultrasonic sensors also performed well during testing, with an average error of 10 percent or less.
  • Toward a Method to Predict Thermo-Mechanical Properties of High-Strength Concrete Placements

    Abstract: In this article, the merits of a thermo-mechanical framework to estimate properties of high-strength concrete are evaluated for potential standardization as a test method. Previous work conducted by the authors was summarized to show the individual advancements toward development of a laboratory testing framework. Most notably, laboratory-based curing protocols have been shown to produce temperature profiles that were similar to mass placements and achieving peak temperatures that were within 2°C of peak temperatures recorded in a mass high-strength concrete placement. Additionally, current testing methods to determine thermo-mechanical properties of mass concrete placements were reviewed, and a clear disconnect was noticed between methods that are predictive as well as a direct measure of mechanical properties. Based on this review of literature and the advancements summarized by the authors, a testing framework is proposed that takes the first steps toward filling this gap in literature of creating a predictive testing protocol that is also a direct measurement of mechanical properties.
  • Engineering With Nature: Integrating Plant Communities into Engineering Practices. A Guidance Manual

    Abstract: Applying native plant communities in environmental engineering practices can profoundly enhance the establishment and sustainment of natural ecosystems, which is imperative for the success of healthy habitats and the wildlife communities they support. The objective of this manual is to stimulate interest in applying native plants in a wide variety of settings, including inland, upland, coastal, riparian, and grassland. The information presented in this manual illustrates natural plant communities and sustainable strategies using native vegetation. This manual discusses the application of vegetation in US Army Corps of Engineers (USACE) projects. Additional case studies incorporate Engineering With Nature® (EWN®) principles into the design and development of existing infrastructural facilities within a military installation. Specifically, the manual identifies desirable plant species suitable for propagation in various states based on historic plant communities and ecological composition and lists invasive species to avoid with suggested native alternatives. Further, it discusses the use of native vegetation in biotechnical applications. Intended users are USACE districts, local, state, and federal agencies, contractors (specialists), and other users (generalists) engaged in EWN projects. Finally, the publication helps practitioners think creatively about using native plant species before, during, and after project design phases.
  • Cultural Landscape Management Plan for Mare Island Naval Cemetery, California

    Abstract: This project was undertaken to provide the US Department of Veterans Affairs National Cemetery Administration with a cultural landscape manage-ment plan for Mare Island Naval Cemetery. The approximately 2.5-acre cemetery is located in Vallejo, California, and contains more than 900 burials. Mare Island Naval Cemetery is part of the Mare Island Naval Ship-yard historic district, which was listed concurrently on the National Register of Historic Places and as a National Historic Landmark in 1975. The US Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) was tasked with writing a cultural landscape management plan for Mare Island Naval Cemetery. Based upon the findings of the historic landscape inventory. Treatment recommendations were made to rehabilitate the historic landscape as well as to provide a sustainable plant list for the cemetery.