Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Technology
Clear
  • Mesoscale Multiphysics Simulations of the Fused Deposition Additive Manufacturing Process

    Abstract: As part of an ongoing effort to better understand the multiscale effects of fused deposition additive manufacturing, this work centers on a multiphysics, mesoscale approach for the simulation of the extrusion and solidification processes associated with fused deposition modeling. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum, and mass transfer, the solid-liquid–vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies to include the nozzle and extrusion velocities as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e., the level-set method) in concert with a moving mesh and temperature-dependent porosity function.
  • Impacts of Invasive Species on Populations of Federally Listed Species on US Army Corps of Engineers Project Lands

    Abstract: The US Army Corps of Engineers (USACE) is mandated to meet federal, state, and local environmental laws and organizational regulations pertaining to the protection and conservation of ESA (Endangered Species Act 1973)-listed species and associated critical habitats. USACE is also mandated under Executive Order 13112 to document the presence and status of invasive species on their lands. We examine the status of 50 ESA–listed species prioritized by USACE expenditures for ESA compliance from 2014 to 2018. We review the status of invasive species and assess any evidence from published US Fish and Wildlife Service (USFWS) or National Marine Fisheries Service recovery plans or other government documents that indicate whether invasive species are negatively impacting the status of ESA–listed species on USACE lands. We found that 18 of 50 (36%) USFWS recovery plans for these 50 listed species specifically mention invasive species as a primary factor leading to the species’ decline and listing, or they note the need for management and control of invasive species to meet proposed recovery goals. USACE will need to work collaboratively with other federal and state agencies, universities, and nongovernmental organizations to improve control of invasive species and management and recovery of ESA–listed species.
  • Comparing Ecological Models for Assessing Rio Grande Silvery Minnow Response to Environmental Flows

    Abstract: The proliferation of continuous streamflow monitoring and spatial data suitable for hydraulic modeling is increasing opportunities to use hydraulic habitat analysis to inform ecological models. However, species population and streamflow data exhibit high variability, making it challenging to identify hydrologic and hydraulic metrics that effectively correlate with ecological outcomes. Metric selection presents a challenge for informing environmental flow decisions and adaptive management of water infrastructure. This study applies models to characterize environmental flows with in-creasing model complexity, including the use of hydraulic models to estimate suitable habitat areas at a given flow. The results are compared to field-measured fish outcomes over the same period using functional data analysis. The variance in model correlation with ecological outcomes aids in identifying the most effective environmental flow parameters while also indicating potential pitfalls from increasing model complexity. This analysis demonstrates techniques that synthesize environmental flows with available habitat analysis and validates the approach. The case study is based on the Rio Grande silvery minnow (Hybognathus amarus, minnow), an endangered fish species in the Middle Rio Grande. Analysis focused on different methods to quantify spring runoff coinciding with the inundation of floodplain nursery habitat necessary for the minnow’s larval and juvenile life stages.
  • Publications of the U.S. Army Engineer Research and Development Center; Appendix H : FY23 (October 2022-September 2023)

    Abstract: Each year, the US Army Engineer Research and Development Center (ERDC) publishes more than 200 reports through the Information Technology Laboratory’s Information Science and Knowledge Management (ISKM) Branch, the publishing authority for ERDC. Annually since 2017, ISKM has compiled a list of the last fiscal year’s publications. This Appendix H to the original collection includes ERDC publications issued October 2022 through September 2023. The publications are grouped according to the technical laboratories or technical program for which they were prepared, and the preface includes procedures for obtaining ERDC reports. Through this compilation, online distribution, and physical collections, ISKM continues to support ERDC, the Army, and the nation.
  • Performance of Army Corps of Engineers Mat System Using Anchorless Connections: A Follow-on Study of Site Stabilization for the Improved Ribbon Bridge Bridge Supplemental Set

    Abstract: The US Army Engineer Research and Development Center conducted testing of the Army Corps of Engineers mat system with improved anchorage and connection hardware. Low-profile screw anchors replaced the ground anchorage of the existing system to reduce wear to tracks and wheels of vehicles while trafficking the system. Anchorless connections allowed the system to be placed over soils where the use of screw anchorage would be obstructed or would cause hazards to trafficking vehicles. Test tracks were constructed to evaluate the matting system with new anchorage and connection hardware over three different soils of weak sand and clay. Channelized traffic was applied to the test tracks using a loaded common bridge transporter. Performance of the updated system was evaluated with respect to results from previous testing, indicating that the improved anchorage and connection hardware increased the versatility of the matting system without sacrificing system performance.
  • Finite Element, Petrographic, and Mechanical Analyses of Field-Cored Concrete Fairlead Beam Anchor Rods from Luke Air Force Base

    Abstract: The fairlead beam is used to accomplish installation of the Barrier Arresting Kit 12 energy absorber for setback aircraft arresting system (AAS) installations at permanent operating facilities. Typical fairlead beams are affixed to a Portland cement concrete (PCC) foundation pad by a series of anchor assemblies made up of steel anchor rods set in grout inside galvanized pipe sleeves. US Air Force Civil Engineering Center (AFCEC) subject matter experts have identified a pattern of premature failures in these steel anchor assemblies when they are nondestructively inspected during AAS overhauls. The US Army Engineer Research and Development Center was tasked by AFCEC to investigate potential reasons for these premature failures. This report outlines methods and results of a finite element analysis of the anchorage, a visual and petrographic analysis of field-cored PCC anchor rods from Luke Air Force Base, and a mechanical analysis of specimens taken from the anchor rods within the PCC cores. Multiple modes of PCC distress were observed, and corrosion was evident in and around the anchor assemblies. Mechanical testing of specimens from the anchor rods indicated that an inferior grade of steel was used to fabricate these particular assemblies. Finally, observed deviations from design intention are discussed.
  • Statistical Analysis of Storm Surge and Seiche Hazards for Lake Erie

    Abstract: Storm surge and seiche events are generally forced by severe storms, initially resulting in a wind-driven super elevation of water level on one or more sides of a lake (surge) followed by a rebound and periodic oscillation of water levels between opposing sides of the lake (seiche). These events have caused flooding along Lake Erie and significant damages to coastal communities and infrastructure. This study builds upon statistical analysis methods initially developed for the 2012 federal interagency Great Lakes Coastal Flood Study. Using the Coastal Hazards System's stochastic Storm Simulation (StormSim) suite of tools, including the Probabilistic Simulation Technique (PST), and regional frequency model, historical extreme events were assessed in a local frequency analysis and a regional frequency analysis to quantify the annual exceedance frequency (AEF) of WLD events specific to Lake Erie. The objective of this study was to quantify AEFs of storm surge and seiche hazards to provide a better understanding of these events to aid flood mitigation and risk reduction for lakeside properties.
  • Beneficial Use of Dredged Material in the Atlantic Intracoastal Waterway: Approaching the Regulatory Process

    Purpose: Following the Chief of Engineer’s January 2023 goal to expand the beneficial use of dredged material (BUDM), the US Army Corps of Engineers (USACE) strives to apply new and creative ways to increase utilization of dredged materials from a historic 30%–40% to 70% by 2030. As USACE Savannah District (SAS) increases BUDM efforts, a critical component of this transition is understanding and navigating the regulatory requirements. This Technical Note outlines the regulatory process for placement of dredged material in Georgia, identifies challenges and institutional barriers, and offers potential solutions to streamlining the overall process. By increasing the ease of navigating the regulatory process, USACE can facilitate an increase in BUDM and Engineering with Nature® (EWN®) projects in Georgia, and potentially other projects employing nature-based solutions (NBS). While regulatory details may vary from state to state, the Georgia example presented here can serves as a road map for the general types of regulatory procedures and potential hurdles found nationwide.
  • Low Sill Control Structure: Physical Modeling Investigation of Riprap Stability Downstream of End Sill

    The model investigation reported herein describes the process to model and analyze the stability of scaled riprap in the existing 1:55 Froude-scaled Low Sill Control Structure physical model. The existing model is a fixed-bed model, so modifications were made to create a testing section for the scaled stone. Three separate gradations of scaled riprap were tested at varying boundary conditions (discharge, head and tailwater elevations, and gate openings). Each test was surveyed using lidar for pre to posttest comparisons. It was found that Gradation B remained stable throughout the tests in the physical model.
  • Lessons in Rearing Mealworms for Plastics Degradation

    Purpose: The primary objective of this research is to determine if plastics-degrading gut bacterial communities from a nonoptimal insect host can be successfully transplanted into the gut of the optimal mealworm host for large scale composting. To achieve this goal, foundational questions about basic mealworm husbandry needed to be addressed, including proper housing and feeding regimes, expected plastics degradation rates, and survivability on plastics as a food source. This technical note serves as a mealworm husbandry protocol and a guide for lessons learned in the early stages of experimentation dealing with establishment of plastics-degrading mealworm colonies.