Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Research
Clear
  • From Analog to Digital: A Systematic Workflow for Converting Published Landform Maps to Georeferenced Datasets

    Abstract: Reference datasets for geomorphological analysis often require the integration of multiple data sources, including legacy maps and published figures that exist only as scanned images or hard copies. This report documents a systematic five-step workflow for converting landform information from these analog sources into georeferenced point datasets suitable for digital analysis. The methodology encompasses acquiring and evaluating imagery, georeferencing using ground control points, manually digitizing landform polygons, converting to centroid points using a systematic grid-based approach, and assigning attributes with quality control measures. In a case study on East Asia, we demonstrate the workflow’s practical application by processing 15 published sources to generate over 2 million labeled landform points representing approximately 1,015 km² of land across China and Mongolia. The dataset encompasses seven landform classes commonly found in arid environments: active washes, alluvial fans, bedrock, pediments, playas, sand dunes, and sand sheets. Quality assessments using analyst confidence ratings revealed reliable classification performance for most landform types. This workflow provides researchers with an efficient approach to leveraging existing published landform data, thus expanding the spatial coverage and temporal depth of reference datasets that are available for geomorphological analysis and machine learning applications.
  • Expansion of a Landform Reference Dataset in the Chihuahuan Desert for Dust Source Characterization Applications

    Abstract: This report details the development of an extensive landform reference dataset for the Chihuahuan Desert region to support validation of a machine-learning-based landform classification model. Building upon previous work by Cook et al. (2022), we expanded both the quantity and spatial coverage of reference points to better represent the study domain’s geomorphic diversity. Analysts integrated information from published literature, government databases, and satellite imagery interpretation to create a dataset of 236,582 points across 12 landform classes, aligned to a 500 m resolution grid. The bedrock/pediment/plateau class was the dominant class (58%), followed by alluvial fans (21%), aeolian sands (11%), and aeolian dunes (5%). Approximately 85% of the reference points received high analyst confidence ratings, and ratings were especially high for classes with distinctive signatures, such as bedrock features, fine-grained lake deposits, urban/developed areas, water, and agricultural lands. Classification challenges consistently emerged in transitional zones between land-forms, areas with anthropogenic modifications, and complex landform assemblages where mapping resolution proved insufficient. The resulting dataset is a valuable resource for model validation and offers insights into arid region geomorphology. Additionally, it has the potential to support multiple applications, including dust hazard forecasting, terrain mobility assessment, soil property inference, and rangeland management.
  • Assessing Heat Pump Technologies in Cold Regions for Army Installations

    Abstract: Air-source heat pumps (ASHPs) can efficiently provide building heating and cooling. To assess the performance of ASHPs in cold regions for the Army Installation Technology Transition Program, we installed an air-to-air minisplit ASHP in Fairbanks, Alaska. This Interior Alaska location is exposed to extreme cold. The appropriate size of the unit was determined using building size and air temperatures from the location. Using monitoring equipment, the heating performance of the unit was analyzed using measurements collected over the winter months. Finally, the coefficient of performance (COP) was calculated, and a thermal camera was used to assess the heating performance qualitatively. The ASHP effectively heated the building during the project, and ASHPs are therefore recommended for use in cold regions.
  • Simulating Environmental Conditions for a Severe Dust Storm in Southwest Asia Using the Weather Research and Forecasting Model: A Model Configuration Sensitivity Study

    Abstract: Dust aerosols create hazardous air quality conditions that affect human health, visibility, and military operations. Numerical weather prediction models are important tools for predicting atmospheric dust by simulating dust emission, transport, and chemical evolution. We assessed the Weather Research and Forecasting (WRF) model’s ability to simulate the atmospheric conditions that drove a major dust event in Southwest Asia during July–August 2018. We evaluated five WRF configurations against satellite observations and Reanalysis Version 5 (ERA5) reanalysis data, focusing on the event’s synoptic evolution, storm progression, vertical structure, and surface wind fields. Results revealed substantial differences between configurations using Noah and Noah Multiparameterization (Noah-MP) land surface models (LSMs), with Noah providing a superior representation of meteorological conditions despite theoretical expectations of similar performance in arid environments. The best-performing configuration (Noah LSM, Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme, and spectral nudging) of the five considered accurately simulated the progression of a low-level jet streak and the associated surface winds responsible for dust mobilization throughout the event. This study supports the US Army Engineer Research and Development Center’s efforts to improve dust forecasting and establishes a foundation for evaluating dust emission parameterizations by isolating meteorological forcing errors from dust model physics.
  • Physical Model Evaluation of the Yazoo Backwater Pumping Plant: Pump Intake Model Study

    Abstract: The Yazoo Backwater Area, located in west Central Mississippi, has historically experienced major flood events caused by high floodwaters from the Mississippi River and interior rainfall accumulation. To manage this, the US Army Corps of Engineers, Vicksburg District (MVK) proposed the construction of a 12-pump, 14,000-cfs-capacity pump station. The pump intake performance of the proposed pump station was evaluated using a scaled physical hydraulic model. The 1:17.62-scale model incorporated the hydraulically relevant components of the design including the inlet channel, all 12 intake bays with formed suction intakes and pump columns, abutments, and surrounding topography. Various pump-operating conditions and intake water-surface elevations were evaluated for acceptable pump performance. Approach-flow conditions were generally symmetrical with minor contraction at the intake divider walls. The outer pump bays produced a less uniform flow distribution. Surface vortices were found to be unacceptable for several pump-operating conditions at the minimum-intake water elevation (EL) and pump-on water-surface elevation. Tests indicated that vortex suppressor beams would be required in the pump bays to reduce the severity and frequency of surface vortices. With the beams installed, the pump intakes provided satisfactory hydraulic performance for the approach-flow conditions.
  • Using the Robot Operating System for Uncrewed Surface Vehicle Navigation to Avoid Beaching

    Abstract: Our research explores the use of the Robotic Operating System (ROS) to autonomously navigate an uncrewed surface vehicle (USV). As a proof of concept, we set up a simulated world and spawned a virtual Wave Adaptive Modular Vehicle (WAM-V). We used the robot_localization package to localize the WAM-V in the virtual world and used move_base for the navigation of waypoints. The move_base package used both costmaps and path planners to reach its intended goal while simultaneously avoiding sub-merged shallow-water obstacles. Shallow-water obstacles are obstacles at a depth that is less than a user-defined value (1 meter in this case). Finally, we investigated using vizanti as a mission planner. This report provides a detailed explanation of the parameters that were modified to demonstrate a successful proof of concept.
  • Naval Expeditionary Runway Reconstruction Criteria: Evaluation of Full-Depth Reclamation for P-8 Aircraft Operations

    Abstract: A structurally failed asphalt pavement section was reconstructed to investigate the full-depth reclamation (FDR) technique. The full-scale FDR pavement section consisted of six different test items containing different FDR material blends, a minimum asphalt layer thickness (i.e., 2 in. and 3 in.), and FDR-surface pavements (i.e., asphalt-surfaced and unpaved pavements). The FDR layers were stabilized with a combination of an asphalt emulsion and Portland cement. A heavy vehicle simulator was employed to simulate the loading conditions of the P-8 Poseidon aircraft. The performance of the full-scale pavement section before and after the FDR reconstruction was compared. The FDR technique was satisfactorily implemented to restore the structural capacity of a failed asphalt pavement. The pavements with FDR layers yielded at least two times more allowable passes than the conventional pavements. The FDR-surface pavement sections also demonstrated structural competency to support the expedient operation of heavy aircraft. The performance data generated from this project must be implemented to improve current practices in the design and evaluation of airfield asphalt pavements containing an FDR layer.
  • Topology Optimization for 3D Printing-Driven Anisotropic Components Accounting for Stress and Displacement Constraints

    Abstract: Concrete 3D printing produces a layered macrostructure with different properties in three orthogonal directions, while new techniques allow printing at different orientations. Can printing with spatially variable layer-to-layer interface orientations produce lighter structures while stress and displacement limits are met? This study establishes the connection between experimentally measured properties of printed concrete samples and parameters of orthotropic elasticity and orthotropic yielding. Building upon this connection, a topology optimization framework is built that minimizes weight with respect to the material distribution and spatially variable layer orientation, while simultaneously addressing stress and displacement constraints. This framework is implemented via the Augmented Lagrangian approach and the Method of Moving Asymptotes, and sensitivities are calculated using the adjoint method to reduce computational cost. To expedite convergence without constraint violations, the concept of offset tolerances is introduced and by introducing a cubic term in the displacement constraints accelerating it at large constraint violations and introducing a density-weighted change norm for the orientation angles to eliminate the effect of inconsequential orientation variations in regions of negligible density. This framework enables investigation of fixed vs. variable orientation, tension-compression asymmetry vs. symmetry in achieving low weights, and the relative effect of stress vs. displacement constraints in minimizing weight.
  • Wave Kinematics-Based Bathymetry Estimates from Satellite Optical Video

    Abstract: Here, cBathyShortDwell, a version of the spectral depth inversion algorithm cBathy adapted for shorter record lengths, was applied to four 29.9-60s satellite-based optical videos and the resulting bathymetry estimates were compared to surveys collected within 13 days of each satellite collect. The Planet SkySat videos were collected at the ERDC Field Research Facility between April and September 2023. The videos were collected at 30Hz with a ground sampling pixel resolution of 0.75-1 m and an image size of approximately 2.5km x 1km. RMSEs from post-processed cBathyShortDwell depth estimates over the 800 m x 1100 m analysis domain using the entire video duration at a 5 Hz frame rate ranged from 0.50 to 0.59 m with biases ranging from -0.19 to 0.16 m. Although some differences were seen in the RMSEs as a function of frame rate, larger differences were observed due to video length, wave visibility in the imagery, and incident wave conditions. The highest RMSEs were observed in short video lengths or low wave visibility. These results are comparable to published RMSE values from established versions of the algorithm and demonstrate the ability of cBathyShortDwell to provide good depth estimates from satellite videos in a range of environmental conditions.
  • Alkaline Hydrolysis for Degrading the Emerging Munitions Contaminant Methylnitroguanidine and Regenerating Graphene Nanoplatelets for Sustainable Adsorption of Munition Compounds

    Abstract: Alkaline hydrolysis has proven to be an effective treatment technique for several emerging and legacy munition compounds. This study evaluates its effectiveness in degrading the emerging insensitive MC methylnitroguanidine in comparison to NQ. Additionally, the feasibility of regenerating graphene nanoplatelets following adsorption of MCs, including MeNQ, NQ, NTO, TNT, DNAN, and RDX, is investigated. This study is among the first to successfully evaluate MeNQ treatment and proposes a novel strategy to regenerate GnPs for further environmental remediation. Regeneration performance in high-pH solutions was compared with processes using a 30:70 solution of acetonitrile:water and reagent water alone to further determine pH- and solvent-based interactions. In high-pH solutions, NTO was desorbed via electrostatic repulsion, while the other MCs degraded, generating breakdown products consistent with previous studies and current findings. The aqueous ammonium produced during degradation may have been removed by GnPs. The organic-aqueous blend enhanced MC removal, with recovery largely correlating with aqueous solubility, though π-π interactions may have hindered desorption. Adsorption following desorption with these techniques resulted in higher capacities compared to systems using reagent water alone, where desorption aligned with adsorption isotherms. Overall, this study provides valuable insights into MeNQ treatment and the reuse of GnPs for sustainable water remediation.