Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Research
  • Levees and Dams at Fort Riley, Kansas, and the Response to the 1951 Flood

    Abstract: This project provides a historic context and inventory for the levees and dams constructed at Fort Riley, Kansas. The purpose of this historic con-text and inventory is to determine the levees and dams’ eligibility for listing in the National Register of Historic Places (NRHP). Determinations of eligibility to the NRHP are then made based on the significance of the levees and dams and the degree to which they retain their integrity for conveying that significance. The authors inventoried and evaluated three levees and two lake dams on the installation. Based on the historic context and inventory, researchers for this project have determined that none of the levees and dams are eligible for the inclusion in the NRHP nor was there enough evidence for a noncontiguous historic district at Fort Riley.
  • Classifying and Benchmarking High-Entropy Alloys and Associated Materials for Electrocatalysis: A Brief Review of Best Practices

    Abstract: In light of the immense compositional diversity of high-entropy materials (HEMs) recently reported (e.g., high-entropy chalcogenides, perovskites, ceramics, etc.) and the relatively amorphous definition of High-Entropy, it is imperative that consistent material classification and benchmarking practices be employed to facilitate comparison between reported figures of merit. In this opinion, an updated form of the numerical high entropy definition is reviewed, which renders a universal entropy metric applicable to high-entropy alloys and emerging HEMs alike. Analytical methods to verify the existence of a solid-solution microstructure, elucidate atomic valence states, and probe atomic disorder are discussed with literature examples to facilitate the physical classification of HEMs. Electrocatalytic benchmarking is discussed in the context of water splitting reactions and best practices are reviewed for determining the electrocatalytically active surface area, reaction overpotential, and electrocatalyst stability.
  • Simulated Barge Impacts on Fiber-Reinforced Polymers (FRP) Composite Sandwich Panels: Dynamic Finite Element Analysis (FEA) to Develop Force Time Histories to Be Used on Experimental Testing

    Abstract: The purpose of this study is to evaluate the dynamic response of fiber-reinforced polymer (FRP) composite sandwich panels subjected to typical barge impact masses and velocities to develop force time histories that can be used in controlled experimental testing. Dynamic analyses were performed on FRP composite sandwich panels using the finite element method software Abaqus/Explicit. The “traction-separation” law in the Abaqus software is used to define the cohesive surface interaction properties to evaluate the damage between FRP composite laminate layers as well as the core separation within the sandwich panels. Numerical models were developed to better under-stand the damage caused by barge impacts and the effects of impacts on the dynamic response of composite structures. Force, displacement, and velocity time histories were obtained with finite element modeling for several mass and velocity cases to develop experimental testing procedures for these types of structures.
  • An Examination of Multihazard Marine Transportation System (MTS) Response and Recovery Operations during the 2020 Hurricane Season

    Abstract: The Committee on the Marine Transportation System (CMTS), Resilience Integrated Action Team (RIAT), was established in 2014 to foster the coordination and coproduction of knowledge that incorporates the concepts of resilience into the marine transportation system (MTS). The RIAT defines resilience as a four-phase cycle that incorporates preparation, response, recovery, and adaptation activities to minimize disruption to the MTS. The RIAT utilizes this definition of resilience to convene first-responder CMTS agencies to examine challenges and successes and make recommendations about past hurricane seasons. The 2020 hurricane season saw a record-breaking number of storms form in the Atlantic basin during a global pandemic. As a result, federal agencies were challenged to operate in a multihazard posture, and many former lessons learned needed to be adjusted to this unprecedented situation.
  • CRREL Environmental Wind Tunnel Upgrades and the Snowstorm Library

    Abstract: Environmental wind tunnels are ideal for basic research and applied physical modeling of atmospheric conditions and turbulent wind flow. The Cold Regions Research and Engineering Laboratory's own Environmental Wind Tunnel (EWT)—an open-circuit suction wind tunnel—has been historically used for snowdrift modeling. Recently the EWT has gone through several upgrades, namely the three-axis chassis motors, variable frequency drive, and probe and data acquisition systems. The upgraded wind tunnel was used to simulate various snowstorm conditions to produce a library of images for training machine learning models. Various objects and backgrounds were tested in snowy test conditions and no-snow control conditions, producing a total of 1.4 million training images. This training library can lead to improved machine learning models for image-cleanup and noise-reduction purposes for Army operations in snowy environments.
  • The Black Experience at Fort Huachuca during WWII: An Interpretation and Exhibit Plan for the Mountain View Officers’ Club

    Abstract: This technical report serves as a contextual planning document for an interpretive exhibit within and surrounding the Mountain View Officers’ Club, Building 66050, at Fort Huachuca, Arizona. During World War II (WWII), the Mountain View Officers’ Club served as the installation’s Black officers’ club. It served as various other uses until 2004, at which point it became vacant. Today, Fort Huachuca is planning to rehabilitate the building into a mission use space with an indoor-outdoor exhibit space for visitor use within the rehabilitation plan footprint, an 8.15 acre Area of Potential Effect (APE) including the WWII building and associated adjacent features. This report provides numerous potential Courses of Action regarding methods of exhibiting and interpreting historic materials and information in the public spaces within the APE. The Courses of Action chosen during a future Design-Build phase will be based on factors currently unknown, such as funding and staffing; thus, this document serves as a Phase I concept plan for ideas that will be further developed and finalized during the Phase II Design-Build phase. This report also provides guidance for course of action implementation pending factors currently unknown. Fort Huachuca will keep this report in both digital and analog format in perpetuity. ERDC-CERL will also publish it online and make it available to the public free of cost.
  • Cartographic Comparative Analysis of Undocumented Farmsteads at Fort McCoy, Wisconsin

    Abstract: Government acquisition of farmland within the present-day boundaries of Fort McCoy is defined by two consequential events: the founding of the installation in 1909, and its expansion in the early 1940s to provide training lands during World War II. Since the 1990s, Fort McCoy’s cultural resources manager (CRM) has sponsored archaeological investigations to determine the eligibility of former farmstead sites for the National Register of Historic Places (NRHP). Using geographic information systems (GISs) to compare historic cartographic sources, this project attempts to ascertain whether there are additional farmstead sites at Fort McCoy that may have been overlooked in existing archaeological investigations. Additionally, it provides a short summary of farmstead archaeological activity at Fort McCoy over the past 20 years, a brief historic context highlighting characteristics of farmsteads in the Upper Midwest, and a brief explanation of enhanced lidar techniques that personnel at Fort McCoy can explore for future use. Finally, an appendix provides a list of questions that may be used to conduct oral interviews with descendants of families who farmed within the present-day boundaries of Fort McCoy.
  • Preliminary Permafrost Predictions within the Chena River Watershed, Alaska, Using Landscape Characteristics

    Purpose: This Technical Note presents a method to create permafrost predictions in the Chena River watershed near Fairbanks, Alaska, using landscape characteristics. We produced probabilities for near-surface permafrost in the Chena River watershed using a published algorithm applied in a nearby region. The methodology presented serves as a proof of concept for developing permafrost maps using similar data in other cold regions.
  • Scaled-Up Synthesis of Water-Retaining Alginate-Based Hydrogel

    Purpose: Synthesis of a scaled-up version of a lithium-ion-based alginate/poly(acrylamide-co-stearyl methacrylate) [Li-alginate/P(AAm-co-SMA)] hydrogel with several optimizations for thermal signature investigations on various environmental substrates.
  • Review of Regressive Channel Erosion and Grade Control Options on the Rio Coca, Ecuador

    Purpose: The US Army Corps of Engineers (USACE) is assisting the Ecuadorian state-run Corporación Eléctrica del Ecuador (CELEC) in addressing a water resource issue involving regressive channel erosion on the Rio Coca. Reconnaissance of the site was completed the week of 21 February 2022; parts of the river system were viewed to determine if improvements could be made to the current grade control structure (GCS) mitigation plan for reducing channel erosion and stabilizing the river system downstream of the Coca Coda Sinclair (CCS) Dam. The Rio Coca is a tributary to the Amazon River system in South America. It originates on the east side of the Andes Mountains and generally flows from southwest to northeast through the project area and then turns and flows east into the Amazon basin (Figure 1).* The Rio Coca valley is a current example of how damaging regressive erosion can be to a fluvial system (Figure 2).