Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Research
Clear
  • Naval Expeditionary Runway Construction Criteria: Evaluation of Reduced Flexural Strength Portland Cement Concrete under P-8 Traffic

    Abstract: A full-scale airfield pavement test section was constructed and trafficked by the US Army Engineer Research and Development Center (ERDC) to investigate the impact of substandard flexural strength portland cement concrete (PCC) on the pavement structural support requirements for the P-8 aircraft. The substandard pavements were representative of those that may be encountered in remote locations where there may be a lack of locally available competent materials, standard construction equipment, or a skilled labor force. The test section consisted of two PCC surface thicknesses that closely matched those evaluated in previous studies utilizing standard-strength PCC. The test items were trafficked with a dual-wheel P-8 test gear on a heavy-vehicle simulator. The outcomes of the trafficking test showed a significant reduction in PCC pavement performance resulting from the reduction in flexural strength. Further, a comparison of observed performance to current pavement design and evaluation procedures suggested that current procedures may be overly conservative and may exceed a level of conservatism appropriate in a contingency environment.
  • Laboratory and Full-Scale Testing of JETCON JC400 Rapid-Setting Concrete Repair Materials for Crater Repairs

    Abstract: The DoD currently utilizes rapid-setting concrete (RSC) for a variety of applications, including capping airfield pavement repairs, to limit closure time. Laboratory and field criteria were previously developed for certifying proprietary products for use in various sizes of repairs to ensure performance under aircraft loads. A few certified products have been added to the qualified products list for larger repairs, but none are manufactured in the region near the Korean peninsula. To address this issue, a candidate Korean product (JETCON JC400) was evaluated via the established laboratory and full-scale testing protocol. One large (i.e., 15 ft × 15 ft) repair and two small (i.e., 8.5 ft × 8.5 ft) repairs were conducted and trafficked with simulated F-15E aircraft traffic. JETCON JC400 met all criteria; therefore, the authors recommended adding it to the US Air Force Qualified Products list for large and small pavement repairs. The material is compatible with all volumetric concrete mixers currently in the DoD inventory and has many other potential applications.
  • Guidance for Managers of USACE Waterbodies: Deploying the ERDC CyanoSTUN™ for Suppression of Cyanobacterial Harmful Algal Blooms

    Purpose: The purpose of this document is to guide US Army Corps of Engineers (USACE) district personnel in using the US Army Engineer Research and Development Center’s (ERDC) CyanoSTUN™ (Cyanobacterial Suppression Through Ultraviolet-Light-C Neutralization) vessel for suppression of cyanobacterial harmful algal blooms (cyanoHABs). This document describes CyanoSTUN’s capabilities and components, intended operating conditions, and instructions for safe and effective operation of the vessel.
  • Discriminating Buried Munitions Based on Physical Models for Their Thermal Response

    Abstract: Munitions and other objects buried near the Earth’s surface can often be recognized in infrared imagery because their thermal and radiative properties differ from the surrounding undisturbed soil. However, the evolution of the thermal signature over time is subject to many complex interacting processes, including incident solar radiation, heat conduction in the ground, longwave radiation from the surface, and sensible and latent heat exchanges with the atmosphere. This complexity makes development of robust classification algorithms particularly challenging. Machine-learning algorithms, although increasingly popular, often require large training datasets including all environments to which they will be applied. Algorithms incorporating an understanding of the physical processes underlying the thermal signature potentially provide improved performance and mitigate the need for large training datasets. To that end, this report formulates a simplified model for the energy exchange near the ground and describes how it can be incorporated into maximum-likelihood ratio and Bayesian classifiers capable of distinguishing buried objects from their surroundings. In particular, a version of the Bayesian classifier is formulated that leverages the differing amplitude and phase response of a buried object over a 24-hour period. These algorithms will be tested on experimental data in a future study.
  • Autonomous Robotics Development in Robot Operating System (ROS) 2 Humble

    Abstract: This report presents a novel Robot Operating System (ROS) 2–based simulation framework designed to facilitate the development and testing of an autonomous navigation stack. Elements of the navigation stack, including lidar odometry, simultaneous localization and mapping (SLAM), and frontier exploration, are discussed in detail. The key features of the navigation stack include real-time performance and scalable architecture. The simulation results were applied to a physical robot. As a result, the physical robot was able to autonomously map the interior of a building and to generate 2D occupancy and 3D point clouds of the environment.
  • Robot Operating System Innovations in Autonomous Navigation

    Abstract: This report presents the results of simulations conducted in preparation for the 2024 Maneuver Support and Protection Integration Experiments (MSPIX) demonstration. The study aimed to develop and test a system for autonomous navigation in complex environments using advanced algorithms to enable the robot to avoid obstacles and navigate safely and efficiently. The report describes the methodology used to develop and test the autonomous navigation system, including the use of simulation, to evaluate its performance. The results of the simulation tests are presented to highlight the effectiveness of the navigation solution.
  • Development and Testing of the FRAME Tool on a 200-Mile Reach of the Lower Mississippi River

    Abstract: Understanding the likely long-term evolution of the Lower Mississippi River (LMR) is a challenging mission for the US Army Corps of Engineers (USACE) that remains difficult for conventional river engineering models. A new type of model is currently in development, tasked with revealing uncertainty-bounded trends in sediment transport and channel morphology over annual, decadal, and centennial timescales. The Future River Analysis and Management Evaluation (FRAME) tool is being designed with river managers and planners in mind to provide exploratory insights into plausible river futures and their potential impacts. A unique attribute of the tool is its hybrid interfacing of traditional one-dimensional hydraulic and sediment transport modeling with geomorphic rules for characterizing the morphological response. This report documents the development of a FRAME test-bed model for a 200-mile reach of the Mississippi River upstream of Vicksburg, Mississippi. This testbed allowed development and testing of the prototype FRAME tool in a data-rich environment. This work identified proposed future developments to provide river managers and planners with a fully functional tool for delivering insights on long-term morphological response in river channels across a variety of spatial and temporal scales.
  • Smart Installation Weather Warning Decision Support

    Abstract: Army installation commanders need timely weather information to make installation closure decisions before or during adverse weather events (e.g., hail, thunderstorms, snow, and floods). We worked with the military installation in Fort Carson, CO, and used their Weather Warning, Watch, and Advisory (WWA) criteria list to establish the foundation for our algorithm. We divided the Colorado Springs area into 2300 grids (2.5 square kilometers areas) and grouped the grids into ten microclimates, geographically and meteorologically unique regions, per pre-defined microclimate regions provided by the Fort Carson Air Force Staff Weather Officers (SWOs). Our algorithm classifies each weather event in the WWA list using the National Weather Service’s and National Digital Forecast Database’s data. Our algorithm assigns each event a criticality level: none, advisory, watch, or warning. The traffic network data highlight the importance of each road segment for travel to and from Fort Carson. The algorithm also uses traffic network data to assign weight to each grid, which enables the aggregation to the region and installation levels. We developed a weather dashboard in ArcGIS Pro to verify our algorithm and visualize the forecasted warnings for the grids and regions that are or may be affected by weather events.
  • An All-Hazards Return on Investment (ROI) Model to Evaluate U.S. Army Installation Resilient Strategies

    Abstract: The paper describes our project to develop, verify, and deploy an All-Hazards Return of Investment model for the U.S. Army Engineer Research and Development Center to provide army installations with a decision support tool for evaluating strategies to make existing installation facilities more resilient. The need for increased resilience to extreme weather was required by U.S. code and DoD guidance, as well as an army strategic plan stipulating an ROI model to evaluate relevant resilient strategies. The ERDC integrated the University of Arkansas designed model into a new army installation planning tool and expanded the scope to evaluate resilient options from climate to all hazards. Our methodology included research on policy, data sources, resilient options, and analytical techniques, along with stakeholder interviews and weekly meetings with installation planning tool developers. The ROI model uses standard risk analysis and engineering economics terms and analyzes potential installation hazards and resilient strategies using data in the installation planning tool. The model calculates the expected net present cost without the resilient strategy, with the resilient strategy, and ROI for each. The minimum viable product ROI model was formulated mathematically, coded in Python, verified using hazard scenarios, and provided to the ERDC for implementation.
  • Headstone Inventory and Scanning at Mare Island Naval Cemetery, California

    Abstract: The National Cemetery Administration (NCA) tasked the US Army Engineer Research and Development Center, Construction Engineering Re-search Laboratory (ERDC-CERL), with inventorying and scanning the nonmilitary headstones at Mare Island Naval Cemetery. The cemetery is located in Vallejo, California, and is part of the Mare Island Naval Ship-yard historic district, which was listed concurrently on the National Register of Historic Places and as a national historic landmark in 1975. The research in this report will assist the US Department of Veterans Affairs (VA), NCA, with compliance with the National Historic Preservation Act of 1966 (NHPA). This report contains a list of headstones that need to be repaired or re-placed and a list of headstones that need to be corrected due to errors. Separate from this report, NCA will be provided with 3D models in .obj (for computer numerical control [CNC]) or .stl (for 3D printing) format. These formats are industry-standard CNC fabrication methods used to cut new stones. This technology will preserve the artistic elements of the stones that would be lost in an AutoCAD rendering process.