Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: June, 2022
Clear
  • Inland Waterway Network Mapping of AIS Data for Freight Transportation Planning

    Abstract: Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84·0% accuracy in detecting stops at ports and 83·5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.
  • Probabilistic Neural Networks that Predict Compressive Strength of High Strength Concrete in Mass Placements using Thermal History

    Abstract: This study explored the use of artificial neural networks to predict UHPC compressive strengths given thermal history and key mix components. The model developed herein employs Bayesian variational inference using Monte Carlo dropout to convey prediction uncertainty using 735 datapoints on seven UHPC mixtures collected using a variety of techniques. Datapoints contained a measured compressive strength along with three curing inputs (specimen maturity, maximum temperature experienced during curing, time of maximum temperature) and five mixture inputs to distinguish each UHPC mixture (ce-ment type, silicon dioxide content, mix type, water to cementitious material ratio, and admixture dosage rate). Input analysis concluded that predictions were more sensitive to curing inputs than mixture inputs. On average, 8.2% of experimental results in the final model fell outside of the predicted range with 67.9%of these cases conservatively underpredicting. The results support that this model methodology is able to make sufficient probabilistic predictions within the scope of the provided dataset but is not for extrapo-lating beyond the training data. In addition, the model was vetted using various datasets obtained from literature to assess its versatility. Overall this model is a promising advancement towards predicting mechanical properties of high strength concrete with known uncertainties.