Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: January, 2022
Clear
  • Energy Atlas—Mapping Energy-Related Data for DoD Lands in Alaska: Phase 2—Data Expansion and Portal Development

    ABSTRACT: As the largest Department of Defense (DoD) land user in Alaska, the U.S. Army oversees over 600,000 hectares of land, including remote areas accessible only by air, water, and winter ice roads. Spatial information related to the energy resources and infrastructure that exist on and adjacent to DoD installations can help inform decision makers when it comes to installation planning. The Energy Atlas−Alaska portal provides a secure value-added resource to support the decision-making process for energy management, investments in installation infrastructure, and improvements to energy resiliency and sustainability. The Energy Atlas–Alaska portal compiles spatial information and provides that information through a secure online portal to access and examine energy and related resource data such as energy resource potential, energy corridors, and environmental information. The information database is hosted on a secure Common Access Card–authenticated portal that is accessible to the DoD and its partners through the Army Geospatial Center’s Enterprise Portal. This Enterprise Portal provides effective visualization and functionality to support analysis and inform DoD decision makers. The Energy Atlas–Alaska portal helps the DoD account for energy in contingency planning, acquisition, and life-cycle requirements and ensures facilities can maintain operations in the face of disruption.
  • In Situ Visualization with Temporal Caching

    Abstract: In situ visualization is a technique in which plots and other visual analyses are performed in tandem with numerical simulation processes in order to better utilize HPC machine resources. Especially with unattended exploratory engineering simulation analyses, events may occur during the run, which justify supplemental processing. Sometimes though, when the events do occur, the phenomena of interest includes the physics that precipitated the events and this may be the key insight into understanding the phenomena that is being simulated. In situ temporal caching is the temporary storing of produced data in memory for possible later analysis including time varying visualization. The later analysis and visualization still occurs during the simulation run but not until after the significant events have been detected. In this article, we demonstrate how temporal caching can be used with in-line in situ visualization to reduce simulation run-time while still capturing essential simulation results.
  • Freight Fluidity for the Port of Baltimore: Vessel Approach and Maritime Mobility Metrics

    Abstract: The United States Army Corps of Engineers is tasked with maintaining waterborne transportation system elements. Understanding channel utilization by vessels informs decisions regarding operations, maintenance, and investments in those elements. Historically, investment decisions have been informed by safety, environmental considerations, and projected economic benefits of alleviating channel restrictions or shipping delays (usually derived from models). However, quantifying causes and impacts of shipping delays based on actual historical vessel location data and then identifying which causes could be ameliorated through investment has been out of reach until recently. In this study, Automatic Identification System vessel position reports were used to develop quantitative measures of transit and dwell-time reliabilities for commercial vessels calling at the Port of Baltimore, Maryland. This port has two deep-water approaches: Chesapeake Bay and the Chesapeake and Delaware Canal. Descriptive metrics were determined for each approach, including port cycle time, harbor stay hours, travel time inbound, and travel time outbound. Then, additional performance measures were calculated: baseline travel time, travel time index, and planning time index. The key finding of this study is that the majority of variability in port cycle time is due to the variability in harbor stay hours, not from channel conditions or channel restrictions.
  • AIS Data Case Study: Evaluating Reception of AIS Position Reports on the Missouri River by LOMA AIS Sites in April and August 2020

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes a method for evaluating the received coverage from Automatic Identification System (AIS) shoreside sites along the Missouri River managed by the US Army Corps of Engineers (USACE) Lock Operations Management Application (LOMA), and presents the results of that analysis. The purpose is to identify AIS coverage gaps in the current system. Reception of AIS transmissions between shore-based transceivers and vessels is generally line-of-sight between the vessel and the AIS site antenna. However, signal reception may be affected by factors such as the distance and terrain between the vessel and the transceiver site, quality of the transceiver installation, state of the equipment either aboard the vessel or at the shore transceiver station, and atmospheric phenomena. Quantifying coverage gaps along the inland waterways system can inform research that uses AIS data, provide information on the performance of the AIS network, and provide guidance for efforts to address coverage gaps to improve navigation safety. In autumn 2020, severe shoaling was occurring on the Missouri River. As the shoals were identified, the Kansas City District requested the LOMA system transmit AIS Aid to Navigation (AtoN) to mark the shoals in several critical areas. However, vessel pilots sometimes reported that they were not receiving the AIS AtoN being transmitted. At the request of the Kansas City District, the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (ERDC-CHL), conducted a coverage analysis using data collected from the LOMA AIS transceivers in the area to determine if there were coverage issues and their extent and to aid in determining the best means of addressing any coverage gaps.
  • USACE Research and Development Strategy: Communication Products

    Abstract: This paper provides the U.S. Army Corps of Engineers (USACE) communication products sent by LTG Scott A. Spellmon to help as we discuss the first USACE Research and Development Strategy. The USACE R&D Strategy was approved at the 1Q22 EGM in Atlanta, and is now ready for fielding, communicating, and implementing. The materials included here are (1) The USACE R&D Strategy, (2) USACE R&D Strategy Slide Deck, (3) USACE Top 10 R&D Priorities 2-pager; (4) USACE Top 10 R&D Priorities Placemat. The USACE R&D Strategy Slide Deck has several examples of R&D products and capabilities, aligned with the Top 10 R&D Priorities, for your use. Please add to these examples with your own, highlighting past R&D success stories as well as the need for future potential R&D.
  • Publications of the U.S. Army Engineer Research and Development Center; Appendix F: FY21 (October 2020-September 2021)

    Abstract: Publications issued October 2020 through September 2021 by the U.S. Army Engineer Research and Development Center (ERDC) are listed. The publications are grouped according to the technical laboratories or technical program for which they were prepared. Procedures for obtaining ERDC reports are included in the Preface.
  • Hydrodynamics in the Morganza Floodway and Atchafalaya Basin, Report 3: Phase 3; A Report for the US Army Corps of Engineers, MRG&P

    Abstract: The Morganza Floodway and the Atchafalaya Basin, located in Louisiana west of the Mississippi River, were evaluated using a two-dimensional Adaptive Hydraulics model. Prior to this study, Phase 1 and 2 model studies were performed that indicated that the existing floodway may not be able to pass the Project Design Flood discharge of 600,000 cubic feet per second due to levee overtopping. In this study, all elevations of exterior and interior levees were updated with current crest elevations. In addition, the Phase 3 effort evaluated the sensitivity of the floodway’s flow capacity to variations in tree/vegetation density conditions. These adjustments in roughness will improve the understanding of the role of land cover characteristics in the simulated water surfaces. This study also provides a number of inundation maps corresponding to certain flows through the Morganza Control Structure.
  • Implementation of an Albedo-Based Drag Partition into the WRF-Chem v4.1 AFWA Dust Emission Module

    ABSTRACT: Employing numerical prediction models can be a powerful tool for fore-casting air quality and visibility hazards related to dust events. However, these numerical models are sensitive to surface conditions. Roughness features (e.g., rocks, vegetation, furrows, etc.) that shelter or attenuate wind flow over the soil surface affect the magnitude and spatial distribution of dust emission. To aide in simulating the emission phase of dust transport, we used a previously published albedo-based drag partition parameterization to better represent the component of wind friction speed affecting the immediate soil surface. This report serves as a guide for integrating this parameterization into the Weather Research and Forecasting with Chemistry (WRF-Chem) model. We include the procedure for preprocessing the required input data, as well as the code modifications for the Air Force Weather Agency (AFWA) dust emission module. In addition, we provide an example demonstration of output data from a simulation of a dust event that occurred in the Southwestern United States, which incorporates use of the drag partition.
  • Vertical and Horizontal Datums Used in the Lower Mississippi Valley for US Army Corps of Engineers Projects

    Abstract: Six geodetic datums have been used by the US Army Corps of Engineers (USACE), Mississippi River Commission (MRC), for river surveys in the Lower Mississippi Valley (LMV). These legacy elevation datums are the Cairo datum, the Memphis datum, the Mean Gulf Level (MGL), the Mean Sea Level (MSL), the National Geodetic Vertical Datum (NGVD) 1929, and the North American Vertical Datum 1988 (NAVD88). The official geodetic datum currently prescribed by the USACE is NAVD88 (USACE 2010). In addition to these different geodetic datums, hydraulic datums are in use by the USACE for rivers, lakes, and reservoir systems. Hydrographic surveys from the Mississippi River are typically based on a low water pool or discharge reference, such as a low water reference plane (LWRP), an average low water plane (ALWP), or a low water (LW) plane. The following technical note is intended to provide background information about legacy datums used in the LMV to permit comparison of historic maps, charts, and surveys pertaining to the Mississippi River in the LMV. The purpose of this report is to provide background information and history of different published horizontal and vertical datums used for presentation of hydrographic survey data from the Mississippi River. The goal is to facilitate understanding of differences with comparison to other historic surveys for change-detection studies along the river. Conversion values are identified herein for the earlier surveys where appropriate, and methods are presented here to evaluate the differences between earlier and later charts and maps. This report is solely intended to address the LMV area and historic surveys made there. This note is not applicable to areas outside of the LMV. Throughout this technical note, historic hydrographic surveys and data from the Memphis, TN, to Rosedale, MS, reach will be used as examples of features of interest for discussion purposes. Selected historic hydrographic survey sheets at Helena, AR, are included as Plates 1 to 3 (Appendix C) of this document and will be used as examples for discussion purposes.
  • A Study on the Delta-Bullington Irregular Terrain Radiofrequency Propagation Model: Assessing Model Suitability for Use in Decision Support Tools

    ABSTRACT: Modeling the propagation of radiofrequency signals over irregular terrain is both challenging and critically important in numerous Army applications. One application of particular importance is the performance and radio connectivity of sensors deployed in scenarios where the terrain and the environment significantly impact signal propagation. This report investigates both the performance of and the algorithms and assumptions underlying the Delta-Bullington irregular terrain radiofrequency propagation model discussed in International Telecommunications Union Recommendation P.526-15. The aim is to determine its suitability for use within sensor-planning decision support tools. After reviewing free-space, spherical earth diffraction, and terrain obstacle diffraction losses, the report discusses several important tests of the model, including reciprocity and geographic continuity of propagation loss over large areas of rugged terrain. Overall, the Delta-Bullington model performed well, providing reasonably rapid and geographically continuous propagation loss estimates with computational demands appropriate for operational use.