Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: 2021
Clear
  • Utilizing Data from the NOAA National Data Buoy Center

    Purpose: This Coastal and Hydraulics Engineering Technical Note (CHETN) guides users through the quality control (QC) and processing steps that are necessary when using archived U.S. National Oceanic and Atmospheric Administration (NOAA) National Data Buoy Center (NDBC) wave and meteorological data. This CHETN summarizes methodologies to geographically clean and QC NDBC measurement data for use by the U.S. Army Corps of Engineers (USACE) user community.
  • First Generation Automated Assessment of Airfield Damage from LiDAR Point Clouds

    Abstract: This research developed an automated software technique for identifying type, size, and location of man-made airfield damage including craters, spalls, and camouflets from a digitized three-dimensional point cloud of the airfield surface. Point clouds were initially generated from Light Detection and Ranging (LiDAR) sensors mounted on elevated lifts to simulate aerial data collection and, later, an actual unmanned aerial system. LiDAR data provided a high-resolution, globally positioned, and dimensionally scaled point cloud exported in a LAS file format that was automatically retrieved and processed using volumetric detection algorithms developed in the MATLAB software environment. Developed MATLAB algorithms used a three-stage filling technique to identify the boundaries of craters first, then spalls, then camouflets, and scaled their sizes based on the greatest pointwise extents. All pavement damages and their locations were saved as shapefiles and uploaded into the GeoExPT processing environment for visualization and quality control. This technique requires no user input between data collection and GeoExPT visualization, allowing for a completely automated software analysis with all filters and data processing hidden from the user.
  • Army R-22 Refrigerant Phase-Out Strategy

    Abstract: R-22 (also known as HCFC-22) is one of the most widely used refrigerants in U.S. Army air-conditioning and refrigeration (AC&R) systems since the phase-out of R-12 refrigerant in 1995. The need to phase out R-22 is at-tributed to its global warming potential and high ozone-depleting capability. The U.S. Army has tens of thousands of aging AC&R systems that will remain dependent on R-22, or one of the recently developed substitutes for R-22, until they reach the end of their operational life. This project conducted a survey to understand the current R-22 usage and types of R-22 AC&R equipment that are in use across Instal-lation Management Command (IMCOM) installations. This study describes several methods to remove or retrofit R-22 from typical AC&R equipment and implementation strategies to meet the stated goal of eliminating R-22 from IMCOM installations. The scope of this project included the review of BUILDER SMS data for IMCOM installations, which included data on 13,000 pieces of comfort cooling equipment for 31 installations. The report also provides an analysis of several R-22 alternatives and their physical properties and compatibility. Mission critical tactical cooling that uses R-22 refrigerant was not within the scope of this project.
  • Monitoring the Milwaukee Harbor Breakwater: An Engineering With Nature® (EWN®) Demonstration Project

    Abstract: The US Army Corps of Engineers (USACE) maintains breakwaters in Mil-waukee Harbor. USACE’s Engineering With Nature® (EWN®) breakwater demonstration project created rocky aquatic habitat with cobbles (10–20 cm) covering boulders (6–8 metric tons) along a 152 m section. A prolific population of Hemimysis anomala, an introduced Pontocaspian mysid and important food source for local pelagic fishes, was significantly (p < .05) more abundant on cobbles versus boulders. Food-habits data of ale-wife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) pro-vided evidence that H. anomala were a common prey item. Night surveys and gill netting confirmed O. mordax preferred foraging on the cobbles (p < .05) and consumed more H. anomala than at the reference site (p < .05). H. anomala comprised a significant portion of the diets of young-of-the-year (YOY) yellow perch (Perca flavescens), YOY largemouth bass (Micropterus salmoides), and juvenile rock bass (Ambloplites rupestris) caught on the breakwater. The natural features’ construction on the break-water increased the available habitat for this benthopelagic macroinverte-brate and created a novel ecosystem benefiting forage fish and a nursery habitat benefiting nearshore game fish juveniles. These data will encour-age the application of EWN concepts during structural repairs at other built navigation infrastructure.
  • Ice Fog Monitoring Near Fairbanks, AK

    ABSTRACT:  Ice fog events, which occur during the Arctic winter, result in greatly decreased visibility and can lead to an increase of ice on roadways, aircraft, and airfields. The Fairbanks area is known for ice fog conditions, and previous studies have shown these events to be associated with moisture released from local power generation. Despite the identified originating mechanism of ice fog, there remains a need to quantify the environmental conditions controlling its origination, intensity, and spatial extent. This investigation focused on developing innovative methods of identifying and characterizing the environmental conditions that lead to ice fog formation near Fort Wainwright, Alaska. Preliminary data collected from December 2019 to March 2020 suggest that ice fog events occurred with temperatures below −34°C, up to 74% of the time ice fog emanated from the power generation facility, and at least 95% of ice particles during ice fog events were solid droxtals with diameters ranging from 7 to 50 µm. This report documents the need for frequent and detailed observations of the meteorological conditions in combination with photographic and ice particle observations. Datasets from these observations capture the environmental complexity and the impacts from energy generation in extremely cold weather conditions.
  • Investigating the USACE Operational Condition Assessment Process Current and Future

    Abstract: The US Army Corps of Engineers operates, maintains, and manages more than $232 billion worth of the Nation’s water resource infrastructure and relies on the Operational Condition Assessment (OCA) process to determine the condition of the assets and their components. The sheer number of components, all of equal OCA scheduling priority, creates challenges in ensuring that assessments are conducted in a timely manner and that data generated are of sufficient quality to inform resource allocation decisions. This research applied methods from systems design to determine the OCA system “as-is” state and create a stakeholder-informed vision of a “to-be” state that addresses current system challenges. To meet its objective of providing current assessments of asset condition, the OCA system must provide four high-level functions: provide access to asset data, conduct assessments, determine asset risk, and prioritize and schedule assessments. The development of capabilities to provide these functions will facilitate the achievement of the OCA system to-be vision: a consistent view of asset condition and risk across the enterprise.
  • Demonstration of Autonomous Aerial Acoustic Recording Systems to Inventory Department of Defense Bird Populations

    Abstract: This demonstration project addressed the Department of Defense need for innovative technology for monitoring avian populations in inaccessible areas. This report presents results from field validation tests for an autonomous aerial acoustic recording system, a helium-filled weather balloon that transported an instrument payload over inaccessible areas (e.g., ordnance impact areas) to record avian vocalizations.
  • Load and Resistance Factors for Earth Retaining, Reinforced Concrete Hydraulic Structures Based on a Reliability Index (β) Derived from the Probability of Unsatisfactory Performance (PUP): Phase 2 Study

    Abstract: This technical report documents the second of a two-phase research and development (R&D) study in support of the development of a combined Load and Resistance Factor Design (LRFD) methodology that accommodates geotechnical as well as structural design limit states for design of the U.S. Army Corps of Engineers (USACE) reinforced concrete, hydraulic navigation structures. To this end, this R&D effort extends reliability procedures that have been developed for other non-USACE structural systems to encompass USACE hydraulic structures. Many of these reinforced concrete, hydraulic structures are founded on and/or retain earth or are buttressed by an earthen feature. Consequently, the design of many of these hydraulic structures involves significant soil structure interaction. Development of the required reliability and corresponding LRFD procedures has been lagging in the geotechnical topic area as compared to those for structural limit state considerations and have therefore been the focus of this second-phase R&D effort. Design of an example T-Wall hydraulic structure involves consideration of five geotechnical and structural limit states. New numerical procedures have been developed for precise multiple limit state reliability calculations and for complete LRFD analysis of this example T-Wall reinforced concrete, hydraulic structure.
  • Sustainment Management System, Water Control Structures: Inventory and Inspection Template

    Abstract: Department of Defense (DoD) military services own and maintain a portfolio of dams, dikes, and levees including over 800 assets with a total replacement value of over $2 Billion. The Inspector General has previously found that the DoD requires an inspection policy for dams, to prevent failures. The Office of the Secretary of Defense (OSD) directed the U.S. Army Engineer Research and Development Center, Construction Engineering Laboratory (ERDC-CERL), to create an inspection method and integrate that method with the Enterprise Sustainment Management System, with aims to provide OSD a consistent description of all DoD real property and facilitate calculation of the Facility Condition Index (FCI) for each asset. This report builds upon ERDC-CERL TR-18-9 to propose a method for both inventory and inspection rating for DoD dams, levees, and dikes. A new real property classification system for DoD water control structures is proposed. To better fulfil the OSD requirement for consistent condition and FCI reporting, it is proposed that DoD reevaluate the replacement values and sustainment cost factors for its water retaining structures. A draft guide for linear segmentation for levees is proposed. Future work will allow CERL to develop an Initial Operating Capability for a module within the Enterprise Sustainment Management System to support the OSD requirement.
  • Empirical analysis of effects of dike systems on channel morphology of the Lower Mississippi River

    NOTE: There was an title error in MRG&P Report No. 36, which was published 3/2/2021 . A new PDF has been attached to the record with the correct title. This email has the correct title as well. No other changes were made.