Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Archive: September, 2021
  • Accelerating the Tactical Decision Process with High-Performance Computing (HPC) on the Edge: Motivation, Framework, and Use Cases

    Abstract: Managing the ever-growing volume and velocity of data across the battlefield is a critical problem for warfighters. Solving this problem will require a fundamental change in how battlefield analyses are performed. A new approach to making decisions on the battlefield will eliminate data transport delays by moving the analytical capabilities closer to data sources. Decision cycles depend on the speed at which data can be captured and converted to actionable information for decision making. Real-time situational awareness is achieved by locating computational assets at the tactical edge. Accelerating the tactical decision process leverages capabilities in three technology areas: (1) High-Performance Computing (HPC), (2) Machine Learning (ML), and (3) Internet of Things (IoT). Exploiting these areas can reduce network traffic and shorten the time required to transform data into actionable information. Faster decision cycles may revolutionize battlefield operations. Presented is an overview of an artificial intelligence (AI) system design for near-real-time analytics in a tactical operational environment executing on co-located, mobile HPC hardware. The report contains the following sections, (1) an introduction describing motivation, background, and state of technology, (2) descriptions of tactical decision process leveraging HPC problem definition and use case, and (3) HPC tactical data analytics framework design enabling data to decisions.
  • Alternative Analysis for Construction Progress Data Spatial Visualization

    Abstract: The U.S. Army Corps of Engineers (USACE) construction projects have multiple stakeholders that collaborate with project delivery team members during the execution of these projects. Many of these stakeholders are located across the U.S., which makes virtual interactions a common communication method for these teams. These interactions often lack spatial visualization, which can add complications to the progress reports provided and how the information is received/interpreted. The visualization of project progress and documents would be invaluable to the stakeholders on critical projects constructed by the USACE. This research was conducted to determine alternatives for migrating Resident Management System (RMS) data into a portal web viewer. This report provides proposed solutions to creating these links in efforts to better harmonize data management and improve project presentation.
  • Determination of Residual Low-Order Detonation Particle Characteristics from IMX-104 Mortar Rounds

    ABSTRACT: The environmental fate and transport of energetic compounds on military training ranges are largely controlled by the particle characteristics of low-order detonations. This study demonstrated a method of command detonation, field sampling, laboratory processing, and analysis techniques for characterizing low-order detonation particles from 60 mm and 81 mm mortar rounds containing the insensitive munition formulation IMX-104. Particles deposited from three rounds of each caliber were comprehensively sampled and characterized for particle size, energetic purity, and morphology. The 60 mm rounds were command-detonated low order consistently (seven low-order detonations of seven tested rounds), with consumption efficiencies of 62%–80% (n = 3). The 81 mm rounds detonated low order inconsistently (three low-order detonations of ten tested rounds), possibly because the rounds were sourced from manufacturing test runs. These rounds had lower consumption efficiencies of 39%–64% (n = 3). Particle-size distributions showed significant variability between munition calibers, between rounds of the same caliber, and with distance from the detonation point. The study reviewed command-detonation configurations, particle transfer losses during sampling and particle-size analysis, and variations in the energetic purity of recovered particles. Overall, this study demonstrated the successful characterization of IMX-104 low-order detonation particles from command detonation to analysis.
  • Incorporating Terrain Roughness into Helicopter Landing Zone Site Selection by Using the Geomorphic Oscillation Assessment Tool (GOAT) v1.0

    ABSTRACT: The Geomorphic Oscillation Assessment Tool (GOAT) quantifies terrain roughness as a mechanism to better explain forward arming and refueling point (FARP) suitability for Army aviation. An empirically driven characteristic of FARP consideration, surface roughness is a key discriminator for site utility in complex terrain. GOAT uses a spatial sampling of high-resolution elevation and land cover data to construct data frames, which enable a relational analysis of component and aggregate site suitability. By incorporating multiple criteria from various doctrinal sources, GOAT produces a composite quality assessment of the areal options available to the aviation commander. This report documents and demonstrates version 1.0 of the GOAT algorithms developed by the U.S. Army Engineer Research and Development Center (ERDC). These details will allow users familiar with R to implement it as a stand-alone program or in R Studio.
  • Autonomous Transport Innovation (ATI): Integration of Autonomous Electric Vehicles into a Tactical Microgrid

    Abstract: The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges then develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; identify research and operational tests for autonomous transport vehicles; investigate requirements for testing and demonstrating of bidirectional vehicle charging within a tactical environment; develop requirements for a sensored, living laboratory that will be used to assess the performance of autonomous innovations; and integrate open standards to promote interoperability and broad-platform compatibility. The research performed resulted in an approach to develop a sensored, living laboratory with operational testing capability to assess the safety, utility, interoperability, and resiliency of autonomous electric transport and V2G technologies in a tactical microgrid. The living laboratory will support research and assessment of emerging technologies and determine the prospect for implementation in defense transport operations and contingency base energy resilience.
  • Rapid Formation of Iron Sulfides Alters Soil Morphology and Chemistry Following Simulated Marsh Restoration

    Abstract: Many marshes show signs of degradation due to fragmentation, lack of sediment inputs, and erosion which may be exacerbated by sea level rise and increasing storm frequency/intensity. As a result, resource managers seek to restore marshes via introduction of sediment to increase elevation and stabilize the marsh platform. Recent field observations suggest the rapid formation of iron sulfide (FeS) materials following restoration in several marshes. To investigate, a laboratory microcosm study evaluated the formation of FeS following simulated restoration activities under continually inundated, simulated drought, and simulated tidal conditions. Results indicate that FeS horizon development initiated within 16 days, expanding to encompass > 30% of the soil profile after 120 days under continuously inundated and simulated tidal conditions. Continuously inundated conditions supported higher FeS content compared to other treatments. Dissolved and total Fe and S measurements suggest the movement and diffusion of chemical constituents from native marsh soil upwards into the overlying sediments, driving FeS precipitation. The study highlights the need to consider biogeochemical factors resulting in FeS formation during salt marsh restoration activities. Additional field research is required to link laboratory studies, which may represent a worst-case scenario, with in-situ conditions.
  • USACE Advanced Modeling Object Standard: Release 1.0

    Abstract: The U.S. Army Corps of Engineers (USACE) Advanced Modeling Object Standard (AMOS) has been developed by the CAD/BIM Technology Center for Facilities, Infrastructure, and Environment to establish standards for support of the Advanced Modeling process within the Department of Defense (DoD) and the Federal Government. The critical component of Advanced Modeling is the objects themselves- and either make the modeling process more difficult or more successful. This manual is part of an initiative to develop a nonproprietary Advanced Modeling standard that incorporates both vertical construction and horizontal construction objects that will address the entire life cycle of facilities within the DoD. The material addressed in this USACE Advanced Modeling Object Standard includes a classification organization that is needed to identify models for specific use cases. Compliance with this standard will allow users to know whether the object model they are getting is graphically well developed but data poor or if it does have the data needed for creating contract documents. This capability will greatly reduce the designers’ efforts to either build an object or search/find/edit an object necessary for the development of their project. Considering that an advanced model may contain hundreds of objects this would represent a huge time savings and improve the modeling process.
  • Vegetation Community Changes in Response to Phragmites Management at Times Beach, Buffalo, New York

    Abstract: Management of invasive phragmites (Phragmites australis [Cav.] Trin. Ex Steud.) in the United States has proven challenging over the last several decades. Various methods for control exist, but integrated approaches appear to have the most success. However, documentation of vegetation community–wide responses to these approaches remains limited. This study monitored plant community changes at Times Beach, New York, over a five-year period. In concert with mowing and thatch removal in all areas, the study evaluated two herbicides separately and together, representing three experimental treatment areas (TAs), for control efficacy by measuring plant community structure. Phragmites was targeted for treatments, avoiding native and nonproblematic non-native species when possible, to preserve beneficial habitat during phragmites control efforts. Monitoring results showed significant drops in phragmites relative cover, relative frequency, and importance values due to integrated management, regardless of herbicide treatment, with corresponding increases in these same values for native and other plant species. This suggests that prudent removal of phragmites is compatible with beneficial plant restorative efforts to maintain and improve habitat in infested areas.
  • Inundation Depth and Duration Impacts on Wetland Soils and Vegetation: State of Knowledge

    Abstract: The following synthesizes studies investigating plant and soil responses to increased inundation in order to support ecosystem restoration efforts related to the alteration of natural wetland hydrodynamics. Specific topics include hydrologic regimes, soil response to inundation, and implications for vegetation communities exposed to increased water depths. Results highlight the important interactions between water, soils, and vegetation that determine the trajectory and fate of wetland ecosystems, including the development of feedback loops related to marsh degradation and subsidence. This report then discusses the knowledge gaps related to implications of inundation depth, timing, and duration within an ecosystem restoration context, identifying opportunities for future research while providing source materials for practitioners developing restoration projects.
  • Threatened, Endangered, and At-Risk Species for Consideration into Climate Change Models in the Northeast

    Abstract: This special report provides a selection process for choosing priority species using the specific focus of high-elevation, forested habitats in the North Atlantic to demonstrate the process. This process includes criteria for choosing invasive species to incorporate into models, given the predicted spread of invasive plant species because of climate change. Discussed in this report are the US Army Corps of Engineers’ Threatened and Endangered Species Team portal, the US Fish and Wildlife Service’s Information for Planning and Consultation Portal, the nonprofit organization Partners in Flight’s watch list, the US Geological Survey’s Biodiversity Information Serving Our Nation model, and NatureServe’s interagency effort Landfire. The data linked this montane habitat with a species of conservation concern, Cartharus bicknelli and the endangered squirrel Glaucomys sabrinus as target species and with Elaeagnus umbellate, Robinia pseudoacacia, Rhamnus cathartica, and Acer planoides as invasive species. Incorporating these links into the climate change framework developed by Davis et al. (2018) will create predictive models for the impacts of climate change on TER-S, which will affect land management decisions in the region.