Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Remote Sensing
  • Demonstration of Autonomous Aerial Acoustic Recording Systems to Inventory Department of Defense Bird Populations

    Abstract: This demonstration project addressed the Department of Defense need for innovative technology for monitoring avian populations in inaccessible areas. This report presents results from field validation tests for an autonomous aerial acoustic recording system, a helium-filled weather balloon that transported an instrument payload over inaccessible areas (e.g., ordnance impact areas) to record avian vocalizations.
  • Evaluation of Unmanned Aircraft System Coastal Data Collection and Horizontal Accuracy: A Case Study at Garden City Beach, South Carolina

    Abstract: The US Army Corps of Engineers (USACE) aims to evaluate unmanned aircraft system (UAS) technology to support flood risk management applications, examining data collection and processing methods and exploring potential for coastal capabilities. Foundational evaluation of the technology is critical for understanding data application and determining best practices for data collection and processing. This study demonstrated UAS Multispectral (MS) and Red Green Blue (RGB) image efficacy for coastal monitoring using Garden City Beach, South Carolina, as a case study. Relative impacts to horizontal accuracy were evaluated under varying field scenarios (flying altitude, viewing angle, and use of onboard Real-Time Kinematic–Global Positioning System), level of commercial off-the-shelf software processing precision (default optimal versus high or low levels) and processing time, and number of ground control points applied during postprocessing (default number versus additional points). Many data sets met the minimum horizontal accuracy requirements designated by USACE Engineering Manual 2015. Data collection and processing methods highlight procedures resulting in high resolution UAS MS and RGB imagery that meets a variety of USACE project monitoring needs for site plans, beach renourishment and hurricane protection projects, project conditions, planning and feasibility studies, floodplain mapping, water quality analysis, flood control studies, emergency management, and ecosystem restoration.
  • Raster-Based Floristic Quality Index: Proof of Concept

    Purpose: The purpose of this study was to develop and demonstrate a raster-based floristic quality index (FQIraster) as a proof of concept. This raster-based approach leverages many of the advantages of high spatial, spectral, and temporal resolution space-borne imagery as well as established remote sensing techniques (vegetation indices and feature classification) to provide rapid measures of vegetation productivity and biodiversity. The developed method should provide researchers and managers a new tool for quantifying and tracking the condition, response, and recovery of expansive wetland landscapes.
  • PUBLICATION NOTICE: Autonomous QUerying And PATHogen Threat Agent Sensor System (AQUA PATH): Monitoring Source Waters with Geospatially Wirelessly Networked Distributed Sensing Systems

    Abstract: Contaminants serve as health risks to recreational water, potable water, and marine life that result in undocumented effects on population exposure. In many areas of the world, the concern lies in contaminated drinking water, which would immediately effect social and economic order. As research advances for innovative solutions, the deployment of automated systems for source water monitoring could reduce the risk of exposure. Water quality monitoring typically involves sample collection and analyses that are performed in a laboratory setting. These results are normally presented after an 18−48 hr period. This report details the prototyped Autonomous QUerying And PATHogen threat agent sensor (AQUA PATH) geoenabled system that is able to detect the presence/absence of pathogenic bacteria indicators in source waters and report these values in the field, in less than 30 minutes. The AQUA PATH system establishes rapid field data collection and reports assessment of source waters bacterial loads at near shore inner coastal locations, which makes a leap forward compared to current presence/absence tests standards established by the EPA.
  • PUBLICATION NOTICE: Spatiotemporally coherent tensor decompositions for the analysis of trajectory data By Trevor Ruiz and Charlotte Ellison

    Abstract: Location acquisition technologies such as global positioning systems (GPS) sensors or telemetry devices generate abundant spatiotemporal measurements of movement of people, animals, and vehicles. The resultant data represent trajectories-paths in space and time traversed by moving objects- and can often be merged with additional information about the entities in motion from connected or external data sources (Zheng 2015). New data analysis frameworks may be able to uncover patterns of human behavior from the fused trajectory and contextual i information. This data and new insights gained from novel analysis tools are p potentially of great interest to the Army and the geospatial community.
  • PUBLICATION NOTICE: Rapid Watershed Assessment Tools Based on High-Resolution Terrain Data

    Abstract: The goal of this project was to develop rapid watershed assessment methods to estimate channel stability and sediment transport potential using high resolution terrain data (Light Detection and Ranging-LiDAR) to support US Army Corps of Engineers (USACE) watershed planning. This project developed a suite of tools based on advanced remote sensing technologies (LiDAR) that use off-the-shelf, high-resolution terrain data to rapidly assess watershed condition at the channel, floodplain, valley, and watershed scales. The widespread availability of high-resolution terrain data provides an opportunity to assess watershed conditions in great detail over large spatial extents. For this project, a channel assessment method was developed using a new LiDAR Hydraulic Geometry Relationships (HGR)-based approach for developing regional curves.
  • PUBLICATION NOTICE: Seamless Integration of Lidar-Derived Volumes and Geomorphic Features into the Sediment Budget Analysis System

    Abstract: This Regional Sediment Management Technical Note provides a workflow and case study documenting the process to integrate lidar-derived volume changes and changes quantified from geomorphic features into the Sediment Budget Analysis System. Sediment budgets provide an understanding of a region’s sediment sources, project needs, processes, data gaps, engineering actions, and ecological considerations. Elevation data from profiles or lidar, sediment characteristics, dredging and placement information, along with other coastal datasets, are used to understand sediment pathways and develop sediment budgets for a region. Workflows and tools have been updated or modified to integrate sediment budget tools, volume change tools, and remote sensing data for the creation of comprehensive regional sediment budgets. 
  • PUBLICATION NOTICE: Investigation into Laboratory Bathymetric Measurement Techniques

    ABSTRACT: There is no universally accepted way to accurately and efficiently measure bathymetry in laboratory hydraulic models. Remote sensing techniques can measure bathymetry without making contact with the model, and some remote sensing techniques can measure the bathymetry in laboratory models without draining the water. The four categories of remote sensing technology investigated in this report are echo sounding technology, laser technology, image processing technology, and radar technology. The technology of each category has strengths and limitations, but can be used in the laboratory to measure bathymetry. Echo sounding technology works well in environments with suspended sediment, but the accuracy is reduced by large beam footprints. Laser technology does not perform as well with suspended sediment but can provide high-accuracy bathymetric measurements. Stereophotography, discussed in the image processing technology section, requires optically clear water and can provide very accurate bathymetric mapping. Radar technology can be very helpful when sub-bottom stratigraphy is important. Technology from each of the categories has been scaled for field application to measure bathymetry and submerged coastal structures.
  • PUBLICATION NOTIFICATION: Local Spatial Dispersion for Multiscale Modeling of Geospatial Data: Exploring Dispersion Measures to Determine Optimal Raster Data Sample Sizes

    ABSTRACT: Scale, or spatial resolution, plays a key role in interpreting the spatial structure of remote sensing imagery or other geospatially dependent data. These data are provided at various spatial scales. Determination of an optimal sample or pixel size can benefit geospatial models and environmental algorithms for information extraction that require multiple datasets at different resolutions. To address this, an analysis was conducted of multiple scale factors of spatial resolution to determine an optimal sample size for a geospatial dataset. Under the NET-CMO project at ERDC-GRL, a new approach was developed and implemented for determining optimal pixel sizes for images with disparate and heterogeneous spatial structure. The application of local spatial dispersion was investigated as a three-dimensional function to be optimized in a resampled image space. Images were resampled to progressively coarser spatial resolutions and stacked to create an image space within which pixel-level maxima of dispersion was mapped. A weighted mean of dispersion and sample sizes associated with the set of local maxima was calculated to determine a single optimal sample size for an image or dataset. This size best represents the spatial structure present in the data and is optimal for further geospatial modeling.
  • PUBLICATION NOTICE: Web-Based Monitoring of Piezometers for the U.S. Army Corps of Engineers Moose Creek Dam, North Pole, Alaska

     Link: Report Number: ERDC/CRREL TR-19-26Title: Web-Based Monitoring of Piezometers for the U.S. Army Corps of Engineers Moose Creek Dam, North Pole, Alaska By Arthur Gelvin, Christopher Williams, and Stephanie Saari Approved for Public Release; Distribution is Unlimited December 2019 Abstract: The Moose Creek