Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Computer simulation
Clear
  • Fort Phantom Power System Analysis-Case Studies for Notional Power Resource Mixes and Energy Storage : Results Produced Using the Analysis of Microgrid Performance, Reliability, and Resilience (AMPeRRe) Computational Model

    Abstract: Analysis of Microgrid Performance, Reliability, and Resilience (AMPeRRe) is a computational model that provides quantitative results to installations and remote communities that inform them of the objectives they can achieve. Results provided by this model lead to reliable intermittent power resource implementation, optimize the set of resources within a power system, and improve reliability and resiliency outcomes. This technical report provides an example of the analysis results AMPeR-Re can produce to quantify the expected benefits and trade-offs of incorporating different power resources and energy storage in a power system. Fort Phantom, a notional installation, was used as the testbed to produce these results. The AMPeRRe model forecasts outcomes such as the power availability, fuel consumption, duty cycle, and excess energy of different power resource investment scenarios. The results produced by this model are based on notional stages of development for the Fort Phantom Consolidated Maintenance Activity (CMA) power system. This technical re-port also pro-vides an expanded set of results and comparison of outcomes from different quantities of incorporated power resources. These results can aid business case development for power systems and enable efficient, informed development.
  • A Qualitative Comparison Review Between Commonly Used Boussinesq Models

    Abstract: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to summarize the Boussinesq models FUNWAVE, Coulwave, and Celeris. This CHETN outlines the governing equations and numerical schemes for each model and presents the order of their error terms. A qualitative comparison was completed between the fully nonlinear models, FUNWAVE and Coulwave, and the weakly nonlinear model, Celeris. Results from this comparison demonstrate capabilities for each model by comparing previously published benchmark validation cases. The discussion section highlights additional areas of research and report recommendations.
  • Using the Robot Operating System for Uncrewed Surface Vehicle Navigation to Avoid Beaching

    Abstract: Our research explores the use of the Robotic Operating System (ROS) to autonomously navigate an uncrewed surface vehicle (USV). As a proof of concept, we set up a simulated world and spawned a virtual Wave Adaptive Modular Vehicle (WAM-V). We used the robot_localization package to localize the WAM-V in the virtual world and used move_base for the navigation of waypoints. The move_base package used both costmaps and path planners to reach its intended goal while simultaneously avoiding sub-merged shallow-water obstacles. Shallow-water obstacles are obstacles at a depth that is less than a user-defined value (1 meter in this case). Finally, we investigated using vizanti as a mission planner. This report provides a detailed explanation of the parameters that were modified to demonstrate a successful proof of concept.
  • Robot Operating System Innovations in Autonomous Navigation

    Abstract: This report presents the results of simulations conducted in preparation for the 2024 Maneuver Support and Protection Integration Experiments (MSPIX) demonstration. The study aimed to develop and test a system for autonomous navigation in complex environments using advanced algorithms to enable the robot to avoid obstacles and navigate safely and efficiently. The report describes the methodology used to develop and test the autonomous navigation system, including the use of simulation, to evaluate its performance. The results of the simulation tests are presented to highlight the effectiveness of the navigation solution.
  • Development and Testing of the FRAME Tool on a 200-Mile Reach of the Lower Mississippi River

    Abstract: Understanding the likely long-term evolution of the Lower Mississippi River (LMR) is a challenging mission for the US Army Corps of Engineers (USACE) that remains difficult for conventional river engineering models. A new type of model is currently in development, tasked with revealing uncertainty-bounded trends in sediment transport and channel morphology over annual, decadal, and centennial timescales. The Future River Analysis and Management Evaluation (FRAME) tool is being designed with river managers and planners in mind to provide exploratory insights into plausible river futures and their potential impacts. A unique attribute of the tool is its hybrid interfacing of traditional one-dimensional hydraulic and sediment transport modeling with geomorphic rules for characterizing the morphological response. This report documents the development of a FRAME test-bed model for a 200-mile reach of the Mississippi River upstream of Vicksburg, Mississippi. This testbed allowed development and testing of the prototype FRAME tool in a data-rich environment. This work identified proposed future developments to provide river managers and planners with a fully functional tool for delivering insights on long-term morphological response in river channels across a variety of spatial and temporal scales.
  • USACE Interference Management Standard v1.0

    Abstract: The Interference Management Standard (IMS) is a comprehensive framework designed to streamline the coordination of design, construction, and operation and maintenance models. The IMS provides clear guidelines, defined goals, and objectives to ensure effective interference management. The process encompasses several stages: authoring and compiling models, clash detection, clash analysis, conflict resolution, report compilation, and deliverables submission. By implementing the IMS, users can expect im-proved efficiency and accuracy in model coordination, leading to enhanced project outcomes.
  • Establishing a Selection of Dust Event Case Studies for Regions in the Global South

    Abstract: Airborne dust is an essential component of climatological and biogeochemical processes. Blowing dust can adversely affect agriculture, transportation, air quality, sensor performance, and human health. Therefore, the accurate characterization and forecasting of dust events is a priority for air quality researchers and operational weather centers. While dust detection and prediction capabilities have evolved over the preceding decades, the weather modeling community must continue to improve the location and timing of individual dust event fore-casts, especially for extreme dust outbreaks. Accordingly, Researchers at the US Army Engineer Research and Development Center (ERDC) are establishing a series of reference case study events to enhance dust transport model development and evaluation. These case studies support ongoing research to increase the accuracy of simulated dust emissions, dust aerosol transport, and dust-induced hazardous air quality conditions. This report documents five new contributions to the reference inventory, including detailed assessments of dust storms from three regions with differing meteorological forcing regimes. Here, we examine two extreme dust episodes that affected India, a multiday berg wind event in southern Africa, a strong but short-lived dust plume from the Atacama Desert of Chile, and a narrow, isolated dust plume emanating from a dry lake bed in Patagonia.
  • FUNWAVE-TVD Testbed: Analytical, Laboratory, and Field Cases for Validation and Verification of the Phase-Resolving Nearshore Boussinesq-Type Numerical Wave Model

    Abstract: Over the last couple of decades, advancements in high-performance computing have allowed phase-resolving, Boussinesq-type numerical wave models to be more practical in addressing nearshore coastal wave processes. As such, the open-source FUNWAVE-TVD numerical wave model has become more ubiquitous across all scientific and engineering-focused R&D organizations, including academic, government, and industry partners. In collaboration with the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory; the University of Delaware; and HR Wallingford, a robust testbed has been developed to allow users to benchmark their applications against new releases of the model. The testbed presented here includes analytical, laboratory, and field cases, to provide guidance on the operational utility of FUNWAVE-TVD and examines numerical convergence, accuracy, and performance in modeling wave generation, propagation, wave breaking, and moving shorelines in nearshore wind-wave applications. A brief discussion on the efficiency of the model across parallel computing platforms is also provided.
  • ERDC-PT: A Multidimensional Particle Tracking Model

    Abstract: This report describes the technical engine details of the particle- and species-tracking software ERDC-PT. The development of ERDC-PT leveraged a legacy ERDC tracking model, “PT123,” developed by a civil works basic research project titled “Efficient Resolution of Complex Transport Phenomena Using Eulerian-Lagrangian Techniques” and in part by the System-Wide Water Resources Program. Given hydrodynamic velocities, ERDC-PT can track thousands of massless particles on 2D and 3D unstructured or converted structured meshes through distributed processing. At the time of this report, ERDC-PT supports triangular elements in 2D and tetrahedral elements in 3D. First-, second-, and fourth-order Runge-Kutta time integration methods are included in ERDC-PT to solve the ordinary differential equations describing the motion of particles. An element-by-element tracking algorithm is used for efficient particle tracking over the mesh. ERDC-PT tracks particles along the closed and free surface boundaries by velocity projection and stops tracking when a particle encounters the open boundary. In addition to passive particles, ERDC-PT can transport behavioral species, such as oyster larvae. This report is the first report of the series describing the technical details of the tracking engine. It details the governing equation and numerical approaching associated with ERDC-PT Version 1.0 contents.
  • Establishing a Series of Dust Event Case Studies for East Asia

    Abstract: Dust aerosols have a wide range of effects on air quality, health, land-management decisions, aircraft operations, and sensor data interpretations. Therefore, the accurate simulation of dust plume initiation and transport is a priority for operational weather centers. Recent advancements have improved the performance of dust prediction models, but substantial capability gaps remain when forecasting the specific location and timing of individual dust events, especially extreme dust outbreaks. Operational weather forecasters and US Army Engineer Research and Development Center (ERDC) researchers established a series of reference case study events to enhance dust transport model evaluation. These reference case studies support research to improve modeled dust simulations, including efforts to increase simulation accuracy on when and where dust is lofted off the ground, dust aerosols transport, and dust-induced adverse air quality issues create hazardous conditions downstream. Here, we provide detailed assessments of four dust events for Central and East Asia. We describe the dust-event lifecycle from onset to end (or when dust transports beyond the area of interest) and the synoptic and mesoscale environ-mental conditions governing the process. Analyses of hourly reanalysis data, spaceborne lidar and aerosol optical depth retrievals, upper-air soundings, true-color satellite imagery, and dust-enhanced false-color imagery supplement the discussions.