Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Optical radar
Clear
  • Analysis of Beach Cusp Formation and Evolution Using High-Frequency 3D Lidar Scans

    Abstract: Beach cusp characteristics were explored using 15 months of 3D lidar scans collected hourly at the Duck, NC, Field Research Facility. Fourier analyses performed on lidar-derived beach elevation contours generated spatial cusp spectra. Active cusp events identified from the location and magnitude of each spectrum’s peak were used to evaluate conditions during cusp formation and evolution. Cusps primarily developed during normally-incident, long-period, low-energy wave conditions with low frequency spread and reflective beach conditions. Often, however, persistent upper-beach cusps lasted days to months and dynamic lower-beach cusps evolved over individual tidal cycles. At times, beaches exhibiting multiple cusp systems reverted to a single cusp system extending the entire beach when the high-tide waterline reached the upper-beach cusps, with the location and spacing of the resulting lower-beach cusps controlled by the upper-beach cusps. This is consistent with a “morphological coupling” hypothesis that hydrodynamic-morphodynamic feedbacks between the swash and upper-beach cusps can form lower-beach cusps with a related wavelength as the tide falls. However, sometimes the high-tide waterline reaching the upper-beach cusps did not result in a unified beach state. This suggest that morphological coupling is often an important factor in controlling the development of new lower-beach cusps but cannot initiate cusp formation in hydrodynamic conditions outside those favorable for cusp activity.
  • Low Size, Weight, Power, and Cost (SWaP-C) Payload for Autonomous Navigation and Mapping on an Unmanned Ground Vehicle

    Abstract: Autonomous navigation and unknown environment exploration with an unmanned ground vehicle (UGV) is extremely challenging. This report investigates a mapping and exploration solution utilizing low size, weight, power, and cost payloads. The platform presented here leverages simultaneous localization and mapping to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, 3D lidar, and red-green-blue and depth cameras. The main goal of this effort is to leverage path planning and navigation for mapping and exploration with a UGV to produce an accurate 3D map. The solution provided also leverages the Robot Operating System
  • UGV SLAM Payload for Low-Visibility Environments

    Abstract: Herein, we explore using a low size, weight, power, and cost unmanned ground vehicle payload designed specifically for low-visibility environments. The proposed payload simultaneously localizes and maps in GPS-denied environments via waypoint navigation. This solution utilizes a diverse sensor payload that includes wheel encoders, inertial measurement unit, 3D lidar, 3D ultrasonic sensors, and thermal cameras. Furthermore, the resulting 3D point cloud was compared against a survey-grade lidar.
  • 3D Measurements of Water Surface Elevation Using a Flash Lidar Camera

    Abstract: This Coastal and Hydraulics Engineering technical note (CHETN) presents preliminary results from a series of tests conducted at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to explore the capabilities and limitations of the GSFL16K Flash Lidar Camera in nearshore science and engineering applications. The document summarizes the spatial coverage and density of data collected in three deployment scenarios and with a range of tuning parameters and provides guidance for future deployments and data-collection efforts.
  • Geomorphic Feature Extraction to Support the Great Lakes Restoration Initiative’s Sediment Budget and Geomorphic Vulnerability Index for Lake Michigan

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) details a Geographic Information Systems (GIS) methodology to produce advanced lidar-derived datasets for use in a coastal erosion vulnerability analysis conducted by the US Army Corps of Engineers (USACE) and other federal partners for the Great Lakes Restoration Initiative (GLRI).
  • The DEM Breakline and Differencing Analysis Tool—Step-by-Step Workflows and Procedures for Effective Gridded DEM Analysis

    Abstract: The DEM Breakline and Differencing Analysis Tool is the result of a multi-year research effort in the analysis of digital elevation models (DEMs) and the extraction of features associated with breaklines identified on the DEM by numerical analysis. Developed in the ENVI/IDL image processing application, the tool is designed to serve as an aid to research in the investigation of DEMs by taking advantage of local variation in the height. A set of specific workflow exercises is described as applied to a diverse set of four sample DEMs. These workflows instruct the user in applying the tool to extract and analyze features associated with terrain, vegetative canopy, and built structures. Optimal processing parameter choices, subject to user modification, are provided along with sufficient explanation to train the user in elevation model analysis through the creation of customized output overlays.
  • User Guide: The DEM Breakline and Differencing Analysis Tool—Gridded Elevation Model Analysis with a Convenient Graphical User Interface

    Abstract: Gridded elevation models of the earth’s surface derived from airborne lidar data or other sources can provide qualitative and quantitative information about the terrain and its surface features through analysis of the local spatial variation in elevation. The DEM Breakline and Differencing Analysis Tool was developed to extract and display micro-terrain features and vegetative cover based on the numerical modeling of elevation discontinuities or breaklines (breaks-in-slope), slope, terrain ruggedness, local surface optima, and the local elevation difference between first surface and bare earth input models. Using numerical algorithms developed in-house at the U.S. Army Engineer Research and Development Center, Geospatial Research Laboratory, various parameters are calculated for each cell in the model matrix in an initial processing phase. The results are combined and thresholded by the user in different ways for display and analysis. A graphical user interface provides control of input models, processing, and display as color-mapped overlays. Output displays can be saved as images, and the overlay data can be saved as raster layers for input into geographic information systems for further analysis.
  • Continued Investigation of Thermal and Lidar Surveys of Building Infrastructure

    ABSTRACT: We conducted a combined lidar and thermal infrared survey from both ground-based and Unmanned Aerial System (UAS) platforms at McMurdo Station, Antarctica, in February 2020 to assess the building thermal envelope and infrastructure of the Crary Lab and the wet utility corridor (utilidor). These high-accuracy, coregistered data produced a 3-D model with assigned temperature values for measured surfaces, useful in identifying thermal anomalies and areas for potential improvements and for assessing building and utilidor infrastructure by locating and quantifying areas settlement and structural anomalies. The ground-based survey of the Crary Lab was similar to previous work performed by the team at both Palmer (2015) and South Pole (2017) Stations. The UAS platform focused on approximately 10,500 linear-feet of utilidor throughout McMurdo Station. The datasets of the two survey areas overlapped, allowing us to combine them into a single, georeferenced 3-D model of McMurdo Station. Coincident exterior temperature and atmospheric measurements and Global Navigation Satellite System real-time kinematic surveys provided further insights. Finally, we assessed the thermal envelope of the Crary Lab and the structural features of the utilidor. The resulting dataset is available for analysis and quantification.
  • Data Collection Tools for River Geomorphology Studies: LiDAR and Traditional Methods

    Abstract: The purpose of this review is to highlight LiDAR data usage for geomorphic studies and compare to other remote sensing technologies. This review further identifies survey efficiencies and issues that can be problematic in using LiDAR digital elevation models (DEMs) in completing surveys and geomorphic analysis. US Army Corps of Engineers (USACE) geospatial data collection guidance (EM 1110-1-1000) (USACE 2015) aligns with the American Society for Photogrammetry and Remote Sensing Positional Accuracy Standards for Digital Geospatial Data (ASPRS 2014). Geomorphic assessment technologies are rapidly evolving, and LiDAR data collection methods are at the forefront. The FluvialGeomorph (FG) toolbox, developed to support USACE watershed planning, is a recent example of the use of LiDAR high-resolution terrain data to provide a new, efficient approach for rapid watershed assessments (Haring et al. 2020; Haring and Biedenharn 2021). However, there are advantages and disadvantages in using LiDAR data compared to other remote sensing technologies and traditional topographic field survey methods.
  • Methodology for Remote Assessment of Pavement Distresses from Point Cloud Analysis

    Abstract: The ability to remotely assess road and airfield pavement condition is critical to dynamic basing, contingency deployment, convoy entry and sustainment, and post-attack reconnaissance. Current Army processes to evaluate surface condition are time-consuming and require Soldier presence. Recent developments in the area of photogrammetry and light detection and ranging (LiDAR) enable rapid generation of three-dimensional point cloud models of the pavement surface. Point clouds were generated from data collected on a series of asphalt, concrete, and unsurfaced pavements using ground- and aerial-based sensors. ERDC-developed algorithms automatically discretize the pavement surface into cross- and grid-based sections to identify physical surface distresses such as depressions, ruts, and cracks. Depressions can be sized from the point-to-point distances bounding each depression, and surface roughness is determined based on the point heights along a given cross section. Noted distresses are exported to a distress map file containing only the distress points and their locations for later visualization and quality control along with classification and quantification. Further research and automation into point cloud analysis is ongoing with the goal of enabling Soldiers with limited training the capability to rapidly assess pavement surface condition from a remote platform.