Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Optical radar
  • UGV SLAM Payload for Low-Visibility Environments

    Abstract: Herein, we explore using a low size, weight, power, and cost unmanned ground vehicle payload designed specifically for low-visibility environments. The proposed payload simultaneously localizes and maps in GPS-denied environments via waypoint navigation. This solution utilizes a diverse sensor payload that includes wheel encoders, inertial measurement unit, 3D lidar, 3D ultrasonic sensors, and thermal cameras. Furthermore, the resulting 3D point cloud was compared against a survey-grade lidar.
  • 3D Measurements of Water Surface Elevation Using a Flash Lidar Camera

    Abstract: This Coastal and Hydraulics Engineering technical note (CHETN) presents preliminary results from a series of tests conducted at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to explore the capabilities and limitations of the GSFL16K Flash Lidar Camera in nearshore science and engineering applications. The document summarizes the spatial coverage and density of data collected in three deployment scenarios and with a range of tuning parameters and provides guidance for future deployments and data-collection efforts.
  • Geomorphic Feature Extraction to Support the Great Lakes Restoration Initiative’s Sediment Budget and Geomorphic Vulnerability Index for Lake Michigan

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) details a Geographic Information Systems (GIS) methodology to produce advanced lidar-derived datasets for use in a coastal erosion vulnerability analysis conducted by the US Army Corps of Engineers (USACE) and other federal partners for the Great Lakes Restoration Initiative (GLRI).
  • The DEM Breakline and Differencing Analysis Tool—Step-by-Step Workflows and Procedures for Effective Gridded DEM Analysis

    Abstract: The DEM Breakline and Differencing Analysis Tool is the result of a multi-year research effort in the analysis of digital elevation models (DEMs) and the extraction of features associated with breaklines identified on the DEM by numerical analysis. Developed in the ENVI/IDL image processing application, the tool is designed to serve as an aid to research in the investigation of DEMs by taking advantage of local variation in the height. A set of specific workflow exercises is described as applied to a diverse set of four sample DEMs. These workflows instruct the user in applying the tool to extract and analyze features associated with terrain, vegetative canopy, and built structures. Optimal processing parameter choices, subject to user modification, are provided along with sufficient explanation to train the user in elevation model analysis through the creation of customized output overlays.
  • User Guide: The DEM Breakline and Differencing Analysis Tool—Gridded Elevation Model Analysis with a Convenient Graphical User Interface

    Abstract: Gridded elevation models of the earth’s surface derived from airborne lidar data or other sources can provide qualitative and quantitative information about the terrain and its surface features through analysis of the local spatial variation in elevation. The DEM Breakline and Differencing Analysis Tool was developed to extract and display micro-terrain features and vegetative cover based on the numerical modeling of elevation discontinuities or breaklines (breaks-in-slope), slope, terrain ruggedness, local surface optima, and the local elevation difference between first surface and bare earth input models. Using numerical algorithms developed in-house at the U.S. Army Engineer Research and Development Center, Geospatial Research Laboratory, various parameters are calculated for each cell in the model matrix in an initial processing phase. The results are combined and thresholded by the user in different ways for display and analysis. A graphical user interface provides control of input models, processing, and display as color-mapped overlays. Output displays can be saved as images, and the overlay data can be saved as raster layers for input into geographic information systems for further analysis.
  • Continued Investigation of Thermal and Lidar Surveys of Building Infrastructure

    ABSTRACT: We conducted a combined lidar and thermal infrared survey from both ground-based and Unmanned Aerial System (UAS) platforms at McMurdo Station, Antarctica, in February 2020 to assess the building thermal envelope and infrastructure of the Crary Lab and the wet utility corridor (utilidor). These high-accuracy, coregistered data produced a 3-D model with assigned temperature values for measured surfaces, useful in identifying thermal anomalies and areas for potential improvements and for assessing building and utilidor infrastructure by locating and quantifying areas settlement and structural anomalies. The ground-based survey of the Crary Lab was similar to previous work performed by the team at both Palmer (2015) and South Pole (2017) Stations. The UAS platform focused on approximately 10,500 linear-feet of utilidor throughout McMurdo Station. The datasets of the two survey areas overlapped, allowing us to combine them into a single, georeferenced 3-D model of McMurdo Station. Coincident exterior temperature and atmospheric measurements and Global Navigation Satellite System real-time kinematic surveys provided further insights. Finally, we assessed the thermal envelope of the Crary Lab and the structural features of the utilidor. The resulting dataset is available for analysis and quantification.
  • Data Collection Tools for River Geomorphology Studies: LiDAR and Traditional Methods

    Abstract: The purpose of this review is to highlight LiDAR data usage for geomorphic studies and compare to other remote sensing technologies. This review further identifies survey efficiencies and issues that can be problematic in using LiDAR digital elevation models (DEMs) in completing surveys and geomorphic analysis. US Army Corps of Engineers (USACE) geospatial data collection guidance (EM 1110-1-1000) (USACE 2015) aligns with the American Society for Photogrammetry and Remote Sensing Positional Accuracy Standards for Digital Geospatial Data (ASPRS 2014). Geomorphic assessment technologies are rapidly evolving, and LiDAR data collection methods are at the forefront. The FluvialGeomorph (FG) toolbox, developed to support USACE watershed planning, is a recent example of the use of LiDAR high-resolution terrain data to provide a new, efficient approach for rapid watershed assessments (Haring et al. 2020; Haring and Biedenharn 2021). However, there are advantages and disadvantages in using LiDAR data compared to other remote sensing technologies and traditional topographic field survey methods.
  • Methodology for Remote Assessment of Pavement Distresses from Point Cloud Analysis

    Abstract: The ability to remotely assess road and airfield pavement condition is critical to dynamic basing, contingency deployment, convoy entry and sustainment, and post-attack reconnaissance. Current Army processes to evaluate surface condition are time-consuming and require Soldier presence. Recent developments in the area of photogrammetry and light detection and ranging (LiDAR) enable rapid generation of three-dimensional point cloud models of the pavement surface. Point clouds were generated from data collected on a series of asphalt, concrete, and unsurfaced pavements using ground- and aerial-based sensors. ERDC-developed algorithms automatically discretize the pavement surface into cross- and grid-based sections to identify physical surface distresses such as depressions, ruts, and cracks. Depressions can be sized from the point-to-point distances bounding each depression, and surface roughness is determined based on the point heights along a given cross section. Noted distresses are exported to a distress map file containing only the distress points and their locations for later visualization and quality control along with classification and quantification. Further research and automation into point cloud analysis is ongoing with the goal of enabling Soldiers with limited training the capability to rapidly assess pavement surface condition from a remote platform.
  • Channel Assessment Tools for Rapid Watershed Assessment

    Purpose: Existing Delta Headwaters Project (DHP) watershed stabilization studies are focused on restoration and stabilization of degraded stream systems. The original watershed studies formerly under the Demonstration Erosion Control (DEC) Project started in the mid 1980s. The watershed stabilization activities are continuing, and because of the vast number of degraded watersheds and limited amount of yearly funding, there is a need for developing a rapid watershed assessment approach to determine which watersheds to prioritize for further work. The goal of this project is to test the FluvialGeomorph (FG) toolkit to determine if the Rapid Geomorphic Assessment approach can identify channel stability trends in Campbell Creek and its main tributary. The FG toolkit (Haring et al. 2019; Haring et al. 2020) is a new rapid watershed assessment approach using high-resolution terrain data (Light Detection and Ranging [LiDAR]) to support U.S. Army Corps of Engineers (USACE) watershed planning. One of the principal goals of the USACE SMART (Specific Measureable Attainable Risk-Informed Timely) Planning is to leverage existing data and resources to complete studies. The FG approach uses existing LiDAR to rapidly assess either reach-specific analysis for smaller more focused studies or larger watersheds or ecosystems. The rapid assessment capability can reduce the time and cost of planning by using existing information to complete a preliminary watershed assessment and provide rapid results regarding where to focus more detailed study efforts.
  • First Generation Automated Assessment of Airfield Damage from LiDAR Point Clouds

    Abstract: This research developed an automated software technique for identifying type, size, and location of man-made airfield damage including craters, spalls, and camouflets from a digitized three-dimensional point cloud of the airfield surface. Point clouds were initially generated from Light Detection and Ranging (LiDAR) sensors mounted on elevated lifts to simulate aerial data collection and, later, an actual unmanned aerial system. LiDAR data provided a high-resolution, globally positioned, and dimensionally scaled point cloud exported in a LAS file format that was automatically retrieved and processed using volumetric detection algorithms developed in the MATLAB software environment. Developed MATLAB algorithms used a three-stage filling technique to identify the boundaries of craters first, then spalls, then camouflets, and scaled their sizes based on the greatest pointwise extents. All pavement damages and their locations were saved as shapefiles and uploaded into the GeoExPT processing environment for visualization and quality control. This technique requires no user input between data collection and GeoExPT visualization, allowing for a completely automated software analysis with all filters and data processing hidden from the user.