Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Optical radar
Clear
  • Introduction of the Pivox System—A Low-Cost, Rapidly Deployable Modular Lidar System

    Abstract: Terrestrial light detection and ranging instruments can provide extremely valuable data for a multitude of applications in a wide variety of science and engineering fields. However, terrestrial lidar systems (TLS), are prohibitively expensive for many projects and require significant power and data resources to allow for the collection and transmittal of real-time lidar data, limiting their use in remote applications. To address the need for low-cost lidar data collection capabilities in remote environments, the US Army Corps of Engineers, Engineer Research Development Center, Cold Regions Research and Engineering Laboratory, and Geotechnical and Structures Laboratory (GSL) developed the Pivox System. The Pivox System integrates a Livox lidar sensor to a Raspberry Pi, allowing for real-time data collection, processing, and transmittal using a self-contained unit that also includes the power supply and communications equipment. We present data collected using the Pivox System in three diverse environments to measure changes in snow depth, the presence of lake ice, and erosion during a levee overtopping experiment.
  • The Quick Response Toolbox User’s Guide

    Abstract: Regional-scale beach morphology, volume, and shoreline changes are quantified using the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) ArcGIS Python toolboxes. This user’s guide details the JALBTCX toolbox framework and the operation of the Quick Response Toolbox. A walkthrough for each individual step within the toolbox will be presented along with example data from Homer, Alaska. Best practices and example data and figures are included as additional documentation for new users.
  • The Profile Feature Extraction Toolbox User’s Guide

    Abstract: The Profile Feature Extraction Toolbox was created by the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) to extract profile features from high-resolution topobathymetric lidar datasets using a transect methodology. This user’s guide details the JALBTCX Toolbox framework, the Profile Feature Extraction Toolbox, and then walks the user through each step within the toolbox to be used alongside example data from Golovin, Alaska. Best practices and example data figures are included for additional assistance to new users. For the full documentation of the JALBTCX Toolbox framework, please see https://cirpwiki.info/wiki/JALBTCX.
  • Exploring Lidar Odometry Within the Robot Operating System

    Abstract: Here, we explore various lidar odometry approaches (with both 3 and 6 degrees of freedom) in simulation. We modified a virtual model of a TurtleBot3 robot to work with the various odometry approaches and evaluated each method within a gazebo simulation. The gazebo model was configured to generate an absolute ground truth for comparison to the odometry results. We used the evo package to compare the ground truth with the various lidar odometry values. The results for KISS-ICP and laser scan matcher (LSM), including two simultaneous localization and map-ping (SLAM) approaches, Fast Lidar-Inertial Odometry (FAST-LIO), and Direct Lidar Odometry (DLO), are provided and discussed. We also tested one of the approaches on our physical robot.
  • Analysis of Beach Cusp Formation and Evolution Using High-Frequency 3D Lidar Scans

    Abstract: Beach cusp characteristics were explored using 15 months of 3D lidar scans collected hourly at the Duck, NC, Field Research Facility. Fourier analyses performed on lidar-derived beach elevation contours generated spatial cusp spectra. Active cusp events identified from the location and magnitude of each spectrum’s peak were used to evaluate conditions during cusp formation and evolution. Cusps primarily developed during normally-incident, long-period, low-energy wave conditions with low frequency spread and reflective beach conditions. Often, however, persistent upper-beach cusps lasted days to months and dynamic lower-beach cusps evolved over individual tidal cycles. At times, beaches exhibiting multiple cusp systems reverted to a single cusp system extending the entire beach when the high-tide waterline reached the upper-beach cusps, with the location and spacing of the resulting lower-beach cusps controlled by the upper-beach cusps. This is consistent with a “morphological coupling” hypothesis that hydrodynamic-morphodynamic feedbacks between the swash and upper-beach cusps can form lower-beach cusps with a related wavelength as the tide falls. However, sometimes the high-tide waterline reaching the upper-beach cusps did not result in a unified beach state. This suggest that morphological coupling is often an important factor in controlling the development of new lower-beach cusps but cannot initiate cusp formation in hydrodynamic conditions outside those favorable for cusp activity.
  • Low Size, Weight, Power, and Cost (SWaP-C) Payload for Autonomous Navigation and Mapping on an Unmanned Ground Vehicle

    Abstract: Autonomous navigation and unknown environment exploration with an unmanned ground vehicle (UGV) is extremely challenging. This report investigates a mapping and exploration solution utilizing low size, weight, power, and cost payloads. The platform presented here leverages simultaneous localization and mapping to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, 3D lidar, and red-green-blue and depth cameras. The main goal of this effort is to leverage path planning and navigation for mapping and exploration with a UGV to produce an accurate 3D map. The solution provided also leverages the Robot Operating System
  • UGV SLAM Payload for Low-Visibility Environments

    Abstract: Herein, we explore using a low size, weight, power, and cost unmanned ground vehicle payload designed specifically for low-visibility environments. The proposed payload simultaneously localizes and maps in GPS-denied environments via waypoint navigation. This solution utilizes a diverse sensor payload that includes wheel encoders, inertial measurement unit, 3D lidar, 3D ultrasonic sensors, and thermal cameras. Furthermore, the resulting 3D point cloud was compared against a survey-grade lidar.
  • 3D Measurements of Water Surface Elevation Using a Flash Lidar Camera

    Abstract: This Coastal and Hydraulics Engineering technical note (CHETN) presents preliminary results from a series of tests conducted at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to explore the capabilities and limitations of the GSFL16K Flash Lidar Camera in nearshore science and engineering applications. The document summarizes the spatial coverage and density of data collected in three deployment scenarios and with a range of tuning parameters and provides guidance for future deployments and data-collection efforts.
  • Geomorphic Feature Extraction to Support the Great Lakes Restoration Initiative’s Sediment Budget and Geomorphic Vulnerability Index for Lake Michigan

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) details a Geographic Information Systems (GIS) methodology to produce advanced lidar-derived datasets for use in a coastal erosion vulnerability analysis conducted by the US Army Corps of Engineers (USACE) and other federal partners for the Great Lakes Restoration Initiative (GLRI).
  • The DEM Breakline and Differencing Analysis Tool—Step-by-Step Workflows and Procedures for Effective Gridded DEM Analysis

    Abstract: The DEM Breakline and Differencing Analysis Tool is the result of a multi-year research effort in the analysis of digital elevation models (DEMs) and the extraction of features associated with breaklines identified on the DEM by numerical analysis. Developed in the ENVI/IDL image processing application, the tool is designed to serve as an aid to research in the investigation of DEMs by taking advantage of local variation in the height. A set of specific workflow exercises is described as applied to a diverse set of four sample DEMs. These workflows instruct the user in applying the tool to extract and analyze features associated with terrain, vegetative canopy, and built structures. Optimal processing parameter choices, subject to user modification, are provided along with sufficient explanation to train the user in elevation model analysis through the creation of customized output overlays.