Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Information Technology Laboratory (ITL)
Clear
  • From Research to Production: Lessons Learned and Best Practices

    Abstract: This paper provides an overview of best practices to assist individuals and teams in transitioning software from a research product into a production environment. The information contained in this paper consists of best practices and lessons learned from an assignment consisting of transitioning a science-based research suite of programs into a more modern software format with appropriate preparations and considerations to be deployed in a production environment. The original software suite was written using both MATLAB and Python programming languages, and the new production version was written in the Python programming language.
  • Comparison of Numerical Simulations of Heat-Induced Stress in Basalt

    Abstract: Energy losses due to excessive noise and heat are primary liabilities in traditional mining processes. Some of the currently researched methods to improve these liabilities involve heating the rock to induce internal stress fractures that make it easier to extract or remove rock with traditional mining equipment. Physical experimentation has yielded useful data that have been applied to numerical simulations of the heating and fracturing of rock, and multiple such simulations have been developed in the commercial multiphysics simulator COMSOL. Since COMSOL is not widely available on DoD high-performance computers, the goal of this research is to develop methods of replicating simulations developed in COMSOL as simulations that run in Abaqus FEA, another commercial multiphysics simulator. In this work, a simulated basalt cylinder with a 25 mm radius and a 158 mm height is subjected to a surface heat flux approximating the effects of a laser beam applied to the top of the cylinder. Simulated stress distributions, displacements, and temperatures obtained from both simulators are compared. When comparable results were not obtained using both simulators, the differences in results were investigated using simplified versions of the simulation.
  • Experimental Evaluation of Steel Beams with Mechanical Section Reduction Retrofitted with Fiber Polymers

    Abstract: Steel elements working in a harsh environment can be exposed to corrosion that degrades their performance and threatens the integrity of the whole structure. Recent studies propose using carbon (CFRP) and basalt (BFRP) fiber–reinforced polymers to repair corroded steel cross sections; however, most of these studies have not explored many of the structural characteristics, including ductility. In this study, we conduct a series of full-scale experimental tests to investigate the impact of corrosion, represented as mechanical section reduction, on steel beams as well as the impact of repairing the beams using CFRP and BFRP in enhancing the beams’ structural performance. Mechanical section reduction, introduced to the flange and web elements, is used to establish a baseline dataset that captures the impact of repairs in the absence of corrosion. Four-point bending loading conditions are utilized for all tested beams. The results show that the reduction of the flange and web section lowers the beams’ yielding load by 10% and 8%, respectively, compared with a beam with a full cross section. Utilizing CFRP and BFRP patches can partially restore the corroded beams’ ductility; however, the BFRP is outperforming the CFRP in improving their ultimate strength by 10% and enhancing their ductility by 10%.
  • A/E/C Computer-Aided Design (CAD) Standard: Release 6.2

    Abstract: The A/E/C Computer-Aided Design (CAD) Standard has been developed by the CAD/Building Information Modeling (BIM) Technology Center for Facilities, Infrastructure, and Environment to eliminate redundant CAD standardization efforts within DoD and the Federal Government. This manual is part of an initiative to develop a nonproprietary CAD standard that incorporates existing industry, national, and international standards and to develop data standards that address the entire life cycle of facilities within DoD. The material addressed in the A/E/C CAD Standard includes level/layer assignments, digital file naming, and standard symbology. The CAD/BIM Center’s primary goal is to develop a CAD standard that is generic enough to operate under various CAD software packages (such as Bentley’s MicroStation and Autodesk’s AutoCAD) while incorporating existing industry standards when possible. While this Standard encompasses many CAD concepts and practices, it is not intended to limit the capabilities of other advanced modeling software. Ultimately, a BIM / Civil Information Modeling standard will be developed to standardize the additional capabilities of other software.
  • Hydraulic Load Definitions for Use in Load and Resistance Factor Design (LRFD) Analysis, Including Probabilistic Load Characterization, of 10 Hydraulic Steel Structures: Report Number 1

    Abstract: In the past, allowable stress design (ASD) was used to design steel structures. The allowable stresses used were determined from previous practice, with limited understanding of the reliability and risk performance provided by the structure. Engineering methods based on Load and Resistance Factor Design (LRFD) provide more accurate lifetime models of structures by providing risk-based load factors. Besides improved safety, cost savings can be provided through improved performance and, in some cases, by delaying rehabilitation. This research project develops LRFD-based engineering procedures for the evaluation and design of hydraulic steel structures (HSS). Hydraulic loads are a key element to the LRFD analysis. This report identifies the primary hydraulic loads and describes procedures that can be used to determine these hydraulic loads. Existing design guidance for HSS is described and presented in the individual chapters. The appendixes to the report provide examples of the procedures used to compute the hydrostatic, wave, and hydrodynamic loads. A new approach for determining wind-induced wave loads was developed. Design guidance for computing the hydrodynamic load was limited for many of the HSS. Additional research is recommended to improve capabilities for computing hydraulic loads. Details on these recommendations can be found in this report.
  • Encryption for Edge Computing Applications

    Purpose: As smart sensors and the Internet of Things (IoT) exponentially expand, there is an increased need for effective processing solutions for sensor node data located in the operational arena where it can be leveraged for immediate decision support. Current developments reveal that edge computing, where processing and storage are performed close to data generation locations, can meet this need (Ahmed and Ahmed 2016). Edge computing imparts greater flexibility than that experienced in cloud computing architectures (Khan et al. 2019). Despite these benefits, the literature highlights open security issues in edge computing, particularly in the realm of encryption. A prominent limitation of edge devices is the hardware’s ability to support the computational complexity of traditional encryption methodologies (Alwarafy et al. 2020). Furthermore, encryption on the edge poses challenges in key management, the process by which cryptographic keys are transferred and stored among devices (Zeyu et al. 2020). Though edge computing provides reduced latency in data processing, encryption mechanism utilization reintroduces delay and can hinder achieving real-time results (Yu et al. 2018). The IoT is composed of a wide range of devices with a diverse set of computational capabilities, rendering a homogeneous solution for encryption impractical (Dar et al. 2019). Edge devices are often deployed in operational locations that are vulnerable to physical tampering and attacks. Sensitive data may be compromised if not sufficiently encrypted or if keys are not managed properly. Furthermore, the distributed nature and quantity of edge devices create a vast attack surface that can be compromised in other ways (Xiao et al. 2019). Understanding established mechanisms and exploring emerging methodologies for encryption reveals potential solutions for developing a robust solution for edge computing applications. The purpose of this document is to detail the current research for encryption methods in the edge computing space and highlight the major challenges associated with executing successful encryption on the edge.
  • Mesoscale Multiphysics Simulations of the Fused Deposition Additive Manufacturing Process

    Abstract: As part of an ongoing effort to better understand the multiscale effects of fused deposition additive manufacturing, this work centers on a multiphysics, mesoscale approach for the simulation of the extrusion and solidification processes associated with fused deposition modeling. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum, and mass transfer, the solid-liquid–vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies to include the nozzle and extrusion velocities as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e., the level-set method) in concert with a moving mesh and temperature-dependent porosity function.
  • Publications of the U.S. Army Engineer Research and Development Center; Appendix H : FY23 (October 2022-September 2023)

    Abstract: Each year, the US Army Engineer Research and Development Center (ERDC) publishes more than 200 reports through the Information Technology Laboratory’s Information Science and Knowledge Management (ISKM) Branch, the publishing authority for ERDC. Annually since 2017, ISKM has compiled a list of the last fiscal year’s publications. This Appendix H to the original collection includes ERDC publications issued October 2022 through September 2023. The publications are grouped according to the technical laboratories or technical program for which they were prepared, and the preface includes procedures for obtaining ERDC reports. Through this compilation, online distribution, and physical collections, ISKM continues to support ERDC, the Army, and the nation.
  • Data-Driven Modeling of Groundwater Level Using Machine Learning

    Purpose: This US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory engineering technical note (CHETN) documents a preliminary study on the use of specialized machine learning (ML) methods to model the variations in groundwater level (GWL) with time. This approach uses historical groundwater observation data at seven gage locations in Wyoming, USA, available from the USGS database and historical data on several relevant meteorological variables obtained from the ERA5 reanalysis dataset produced by the Copernicus Climate Change Service (usually referred to as C3S) at the European Center for Medium-Range Weather Forecasts to predict future GWL values for a desired period of time. The results presented in this report indicate that the ML method has the potential to predict both short-term (4-hourly) as well as daily variations in GWL several days into the future for the chosen study region, thus alleviating the need for employing sophisticated process-based numerical models with complicated model structure configurations.
  • Neural Ordinary Differential Equations for Rotorcraft Aerodynamics

    Abstract: High-fidelity computational simulations of aerodynamics and structural dynamics on rotorcraft are essential for helicopter design, testing, and evaluation. These simulations usually entail a high computational cost even with modern high-performance computing resources. Reduced order models can significantly reduce the computational cost of simulating rotor revolutions. However, reduced order models are less accurate than traditional numerical modeling approaches, making them unsuitable for research and design purposes. This study explores the use of a new modified Neural Ordinary Differential Equation (NODE) approach as a machine learning alternative to reduced order models in rotorcraft applications—specifically to predict the pitching moment on a rotor blade section from an initial condition, mach number, chord velocity and normal velocity. The results indicate that NODEs cannot outperform traditional reduced order models, but in some cases they can outperform simple multilayer perceptron networks. Additionally, the mathematical structure provided by NODEs seems to favor time-dependent predictions. We demonstrate how this mathematical structure can be easily modified to tackle more complex problems. The work presented in this report is intended to establish an initial evaluation of the usability of the modified NODE approach for time-dependent modeling of complex dynamics over seen and unseen domains.