Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Information Technology Laboratory (ITL)
Clear
  • The Forefront : A Review of ERDC Publications, Summer 2022

    Abstract: : As the main research and development organization for the US Army Corps of Engineers (USACE), the Engineer Research and Development Center (ERDC) helps solve our nation’s most challenging problems. With seven laboratories under the ERDC umbrella, ERDC expertise spans a wide range of disciplines. This provides researchers an amazing network of collaborators both within labs and across them. Many of the publications produced by ERDC through the Information Technology Laboratory’s Information Science and Knowledge Management Branch (ISKM), the publishing authority for ERDC, are a testament to the power of these partnerships. Therefore, in this issue of The Forefront, we wanted to highlight some of those collaborations, across ERDC and beyond. Colored flags at the top of each page indicate the laboratories involved in each report (see the end of this issue for a full list of the laboratories and their lab colors), in addition to USACE red for district collaborators and gray for others. Through these collaborations, ERDC is continuing to demonstrate its value nationally and internationally. Questions about the reports highlighted in The Forefront or others published by ERDC? Contact the ISKM virtual reference desk at erdclibrary@ask-a-librarian.info or visit ERDC Knowledge Core, ISKM’s online repository, at https://erdc-library.erdc.dren.mil/. For general questions about editing and publishing at ERDC, you are also welcome to reach out to me at Emily.B.Moynihan@usace.army.mil. We look forward to continuing to be a resource for ERDC and seeing all the remarkable research that is yet to come.
  • Leveraging Production Visualization Tools In Situ

    Abstract: The visualization community has invested decades of research and development into producing large-scale production visualization tools. Although in situ is a paradigm shift for large-scale visualization, much of the same algorithms and operations apply regardless of whether the visualization is run post hoc or in situ. Thus, there is a great benefit to taking the large-scale code originally designed for post hoc use and leveraging it for use in situ. This chapter describes two in situ libraries, Libsim and Catalyst, that are based on mature visualization tools, VisIt and ParaView, respectively. Because they are based on fully featured visualization packages, they each provide a wealth of features. For each of these systems we outline how the simulation and visualization software are coupled, what the runtime behavior and communication between these components are, and how the underlying implementation works. We also provide use cases demonstrating the systems in action. Both of these in situ libraries, as well as the underlying products they are based on, are made freely available as open-source products. The overviews in this chapter provide a toehold to the practical application of in situ visualization.
  • A Tutorial on the Rapid Distortion Theory Model for Unidirectional, Plane Shearing of Homogeneous Turbulence

    Abstract: The theory of near-surface atmospheric wind noise is largely predicated on assuming turbulence is homogeneous and isotropic. For high turbulent wavenumbers, this is a fairly reasonable approximation, though it can introduce non-negligible errors in shear flows. Recent near-surface measurements of atmospheric turbulence suggest that anisotropic turbulence can be adequately modeled by rapid-distortion theory (RDT), which can serve as a natural extension of wind noise theory. Here, a solution for the RDT equations of unidirectional plane shearing of homogeneous turbulence is reproduced. It is assumed that the time-varying velocity spectral tensor can be made stationary by substituting an eddy-lifetime parameter in place of time. General and particular RDT evolution equations for stochastic increments are derived in detail. Analytical solutions for the RDT evolution equation, with and without an effective eddy viscosity, are given. An alternative expression for the eddy-lifetime parameter is shown. The turbulence kinetic energy budget is examined for RDT. Predictions by RDT are shown for velocity (co)variances, one-dimensional streamwise spectra, length scales, and the second invariant of the anisotropy tensor of the moments of velocity. The RDT prediction of the second invariant for the velocity anisotropy tensor is shown to agree better with direct numerical simulations than previously reported.
  • A Dynamic Hyperbolic Surface Model for Responsive Data Mining

    Abstract: Data management systems impose structure on data via a static representation schema or data structure. Information from the data is extracted by executing queries based on predefined operators. This paradigm restricts the searchability of the data to concepts and relationships that are known or assumed to exist among the objects. While this is an effective and efficient means of retrieving simple information, we propose that such a structure severely limits the ability to derive breakthrough knowledge that exists in data under the guise of “unknown unknowns.” A dynamic system will alleviate this dependence, allowing theoretically infinite projections of the data to reveal discoverable relationships that are hidden by traditional use case-driven, static query systems. In this paper, we propose a framework for a data-responsive query algebra based on a dynamic hyperbolic surface model. Such a model could provide more intuitive access to analytics and insights from massive, aggregated datasets than existing methods. This model will significantly alter the means of addressing the underlying data by representing it as an arrangement on a dynamic, hyperbolic plane. Consequently, querying the data can be viewed as a process similar to quantum annealing, in terms of characterizing data representation as an energy minimization problem with numerous minima.
  • Risk-Based Prioritization of Operational Condition Assessments: Jennings Randolph Case Study

    Abstract: The US Army Corps of Engineers (USACE) operates, maintains, and manages over $232 billion worth of the Nation’s water resource infrastructure. Using Operational Condition Assessments (OCA), the USACE allocates limited resources to assess asset condition in efforts to minimize risks associated with asset performance degradation, but decision makers require a greater understanding of those risks. The analysis of risk associated with Flood Risk Management assets in the context of its associated watershed system includes understanding the consequences of the asset’s failure and a determination of the likelihood that the asset will perform as expected given the current OCA ratings of critical components. This research demonstrates an application of a scalable methodology to model the probability of a dam performing as expected given the state of its subordinate gates and their components. The research team combines this likelihood with consequences generated by the application of designed simulation experiments with hydrological models to develop a measure of risk. The resulting risk scores serve as an input for an optimization program that outputs the optimal set of components to conduct OCAs on to minimize risk in the watershed. Proof-of-concept results for an initial case study on the Jennings Randolph Dam are provided.
  • 2020 Guided Wave Inspection of California Department of Water Resources Tainter Gate Post-Tensioned Trunnion Anchor Rods: Oroville Dam

    Abstract: The Engineering and Test Branch within the Division of Operations and Maintenance of the California Department of Water Resources (DWR) and U.S. Army Corps of Engineers (USACE), Sacramento District, tasked the Sensor Integration Branch (SIB) at the Engineer Research and Development Center (ERDC) to perform non-destructive testing (NDT) on the trunnion anchor rods at Oroville Dam through the use of ultrasonic guided waves. This is the third year of this NDT. The results of the testing are presented along with qualitative analysis in determining whether a rod is in-tact or compromised. Analysis is based upon the expected results from other rods at the site, knowledge of rod response at other sites, data gathered from the trunnion rod research test bed at the ERDC, and comparison to the previous year’s effort.
  • Investigating the Influence of Demographics and Personality Types on Practitioners' Level of Systems Thinking Skills

    Abstract: Although the application of systems thinking (ST) has become essential for practitioners when dealing with turbulent and complex environments, there are limited studies available in the current literature that investigate how the ST skills of practitioners vary with regard to demographic factors and personality types (PTs). To address this gap, this article uses a structural equation modeling approach to explore the relationship be-tween practitioners’ ST skills, PT, and a set of demographic factors. The demographic factors included in the study are education level, the field of the highest degree, organizational ownership structure, job experience, and current occupation type. A total of 99 engineering managers, 104 systems engineers (SEs), and 55 practitioners with other occupations participated in this article. Results showed that the education level, the field of the highest degree, PT, organizational ownership structure, and current job experience of practitioners influenced their level of ST skills. Additionally, the current occupation type of practitioners partially affects their level of ST skills. An in-depth analysis was also conducted using multiple group analysis to show how seven ST skills of the practitioners vary across their level of education. Taken together, the findings of the study suggest that PT and a set of demographic factors influence the overall ST skill of the practitioners.
  • Engineering With Nature Website User Guide

    Abstract: The Engineering With Nature (EWN) program is a high-profile effort that aims to deliver cost-effective, broadly beneficial solutions to natural re-source and sustainability challenges across the nation. A portion of this is accomplished through the use of the EWN website, which features news, podcasts, articles, and more. The content on the EWN website serves to educate and inform hundreds of visitors monthly. This content is generated and managed by EWN team members with web development experience, as it requires manually editing the website HTML and staging changes on a development server. With the EWN website 2.0, a new website framework (WordPress) has been implemented that will save content managers time and effort by providing a front-end user interface (UI) to enable the uploading, staging, and approval of new content for the website, along with a visual refresh to herald the impending release of season 2 of the EWN Podcast. This document’s purpose is to demonstrate the functionality of the new EWN website and provide instructional material for those managing content via the new EWN website.
  • In Situ Visualization with Temporal Caching

    Abstract: In situ visualization is a technique in which plots and other visual analyses are performed in tandem with numerical simulation processes in order to better utilize HPC machine resources. Especially with unattended exploratory engineering simulation analyses, events may occur during the run, which justify supplemental processing. Sometimes though, when the events do occur, the phenomena of interest includes the physics that precipitated the events and this may be the key insight into understanding the phenomena that is being simulated. In situ temporal caching is the temporary storing of produced data in memory for possible later analysis including time varying visualization. The later analysis and visualization still occurs during the simulation run but not until after the significant events have been detected. In this article, we demonstrate how temporal caching can be used with in-line in situ visualization to reduce simulation run-time while still capturing essential simulation results.
  • Publications of the U.S. Army Engineer Research and Development Center; Appendix F: FY21 (October 2020-September 2021)

    Abstract: Publications issued October 2020 through September 2021 by the U.S. Army Engineer Research and Development Center (ERDC) are listed. The publications are grouped according to the technical laboratories or technical program for which they were prepared. Procedures for obtaining ERDC reports are included in the Preface.