Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Coastal and Hydraulics Laboratory (CHL)
Clear
  • Sediment Mobility, Closure Depth, and the Littoral System – Oregon and Washington Coast

    Abstract: Forty years ago, the depth of closure concept was introduced to provide a systematic, process-based approach to evaluate seasonal changes in cross-shore profiles and sediment mobility in the nearshore. This study aims to extend that theory by directly considering wave-asymmetry in the nearshore environment. This technical note introduces a methodology to calculate wave induced dispersal of dredged material placed in nearshore sites and summarizes analyses validating the approach using data from the South Jetty Site at the Mouth of the Columbia River. This investigation highlights the notion of a cross-shore gradient in nearshore placement effectiveness of dredged material that can assist project managers plan and execute sustainable sediment management practices at coastal inlets.
  • Coastal Resilience: Benefits of Wrack and Dune Systems and Current Management Practices

    Purpose: The purpose of this US Army Engineer Research and Development Center (ERDC) technical note (TN) is to review both the ecological and geomorphological impacts of wrack on dune systems and provide an overview of current beach dune and wrack management practices. As part of the US Army Corps Regional Sediment Management (RSM) Program, this TN also introduces a case study investigating wrack management solutions for dune stabilization.
  • Method to Evaluate Vessel Wake Forces on Wetland Scarps

    Purpose: This Coastal and Hydraulics engineering technical note (CHETN) presents a methodology to compute normal forces on wetland perimeters with vertically scarped edges. The approach uses an empirical algorithm that predicts the normal force given the offshore vessel wake height, period, and water depth at a given point. Wave impact forces are measured using load cells, which have not been applied previously to marsh settings. Load cell and vessel wake measurements from two field sites are combined to generate an empirical transfer function relating forces to incoming vessel wake characteristics.
  • Coastal Hazards System–Louisiana (CHS-LA)

    Abstract: The US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL) expanded the Coastal Hazards System (CHS) to quantify storm surge and wave hazards for coastal Louisiana. The CHS Louisiana (CHS-LA) coastal study was sponsored by the Louisiana Coastal Protection and Restoration Authority (CPRA) and the New Orleans District (MVN), US Army Corps of Engineers (USACE) to support Louisiana’s critical coastal infrastructure and to ensure the effectiveness of coastal storm risk management projects. The CHS-LA applied the CHS Probabilistic Coastal Hazard Analysis (PCHA) framework to quantify tropical cyclone (TC) responses, leveraging new atmospheric and hydrodynamic numerical model simulations of synthetic TCs developed explicitly for the Louisiana region. This report focuses on documenting the PCHA conducted for the CHS-LA, including details related to the characterization of storm climate, storm sampling, storm recurrence rate estimation, marginal distributions, correlation and dependence structure of TC atmospheric-forcing parameters, development of augmented storm suites, and assignment of discrete storm weights to the synthetic TCs. As part of CHS-LA, coastal hazards were estimated within the study area for annual exceedance frequencies (AEFs) over the range of 10 yr-1 to 1×10-4 yr-1.
  • Sediment Supply from Bank Caving on the Lower Mississippi River, 1765 to Present

    Abstract: Bank caving rates and associated total sediment supply were calculated along the Lower Mississippi River from Cairo, IL, to Baton Rouge, LA, using historical maps between 1765 and 1992. Comparison of these maps reveals that the added sediment loads from bank erosion have greatly declined through time. In the pre-1960s period, erosion rates generally ranged from approximately 300 million cubic yards (MCY) to 400 MCY, with the 1880–1930s period having the highest erosion rates of approximately 600 MCY. By the 1990s, the sediment supply from bank erosion was essentially eliminated, with significant erosion being observed at only a few locations, totaling approximately 40 MCY/year. This equates to approximately a 90% reduction in the amount of total sediment being supplied to the channel system from bank erosion.
  • Current State of Practice of Nearshore Nourishment by the United States Army Corps of Engineers

    Abstract: This US Army Corps of Engineers (USACE) special report prepared by the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, provides an overview of the current state of practice for nearshore nourishment with dredged sediment. This special report was completed with responses and input from professionals across the dredging and placement teams from each of the USACE Coastal and Great Lakes districts, providing comprehensive overviews of the decision trees these districts utilize in the placement of their dredged sediment. This report describes the general practice of nearshore nourishment, the impediments and concerns faced by nearshore nourishment projects, and the practical methods utilized by the Coastal and Great Lakes districts for their nearshore nourishment projects. Understanding the current state of practice, along with the general and specific impediments the districts face, enables further research in and development of best practices for use across the USACE and better communication of the practice to other stakeholders.
  • Screening Dredged Material to Meet Placement Requirements

    Abstract: Certain types of dredging projects require screening of the dredged material (DM) to achieve the project’s DM placement requirement(s). Screening in the context of this report will be defined as the separation of an oversized fraction of the DM from the remaining fraction to meet project-specific placement compliance criteria (or criterion). Examples of DM placement requirements include aspects such as removing Munitions and Explosives of Concern (MEC) to address safety concerns and extracting over-sized material for beneficial use of DM (e.g., gravel and debris from sand to meet beach nourishment placement standards). Welp et al. (2008) provide detailed guidance for personnel involved in dredging projects with sediment containing MEC. The purpose of this document is to not only update the previous MEC-centric guidance with newly developed or identified technology but to also expand upon screening aspects to provide guidance for personnel involved in dredging projects that require removal of an oversized fraction for screening purposes other than just MEC removal.
  • The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment

    NOTE: The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment is a 9-volume series of reports that was produced under the direction of the Mississippi River Geomorphology & Potamology Program. An abstract from the main report, Volume 1, is listed below, along with the individual volume titles and links to the relevant reports. ABSTRACT: This is the main report of Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment. The primary objective of the OMAR Technical Assessment was to conduct a comprehensive evaluation that aimed to understand the impacts of former and potential changes to the system in the vicinity of the Old River Control Complex (ORCC) over time, the water and sediment delivery regime at the ORCC, and the effects to the river system surrounding the ORCC. Scenarios evaluated in this technical assessment were designed to investigate potential system responses to a wide range of possible operational alternatives and identify knowledge gaps in current understanding of system behavior. This report summarizes and synthesizes the individual reports detailing the investigations into specific aspects of the ORCC and the surrounding region.
  • Swan Island: Monitoring and Adaptive Management Plan

    Abstract: Swan Island is a 10.12 ha island located in the Maryland waters of the Chesapeake Bay. Because of its value as a natural wave break for the town of Ewell on nearby Smith Island, as well as the ongoing erosion and subsidence of the island, in 2019 US Army Corps of Engineers (USACE)–Baltimore District placed 45,873 m³ of dredged sediment and planted 200,000 marsh plants. This restoration provided an opportunity to quantify the engineering (that is, resilience) and ecological performance of the island, postplacement. The lack of quantitative data on the performance of natural features such as islands has led to perceived uncertainties that are often cited as barriers to implementation. To address these data gaps, a multidisciplinary collaboration of five government entities identified project objectives and monitoring parameters through a series of mediated workshops and then developed a conceptual model to articulate those parameters and the linkages between them. This monitoring and adaptive management plan (MAMP) documents those monitoring parameters and procedures and can serve as an example for other scales, regions, and research questions. Documenting research and monitoring efforts may help to foster widespread acceptance of nature-based solutions such as islands.
  • Evaluation of Unmanned Aircraft Systems for Flood Risk Management: Results of Terrain and Structure Assessments

    Abstract: The 2017 Duck Unmanned Aircraft Systems (UAS) Pilot Experiment was conducted by the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, Field Research Facility (FRF), to assess the potential for different UAS to support US Army Corps of Engineers coastal and flood risk management. By involving participants from multiple ERDC laboratories, federal agencies, academia, and private industry, the work unit leads were able to leverage assets, resources, and expertise to assess data from multiple UAS. This report compares datasets from several UAS to assess their potential to survey and observe coastal terrain and structures. In this report, UAS data product accuracy was analyzed within the context of three potential applications: (1) general coastal terrain survey accuracy across the FRF property; (2) small-scale feature detection and observation within the experiment infrastructure area; and (3) accuracy for surveying coastal foredunes. The report concludes by presenting tradeoffs between UAS accuracy and the cost to operate to aid in selection of the best UAS for a particular task. While the technology and exact UAS models vary through time, the lessons learned from this study illustrate that UAS are available at a variety of costs to satisfy varying coastal management data needs.