Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Microbiome Perturbations During Domestication of the Green June Beetle (Cotinis nitida)

    Abstract: Animal-associated microbiomes are critical to the well-being and proper functioning of the animal host, but only limited studies have examined in-sect microbiomes across different developmental stages. These studies revealed large shifts in microbiome communities, often because of significant shifts in diet during insects’ life cycle. Establishing insect colonies as model laboratory organisms and understanding how to properly feed and care for animals with complex and dynamic life cycles requires improved data. This study examined laboratory-raised green June beetles (Cotinis nitida) captured from the field upon emergence from pupae. Starting with wild-caught adults, two generations of beetles were reared in the laboratory, ending with an entirely laboratory-raised generation of larvae. The study compared the microbiomes of each generation and the microbiomes of larvae to adults. This study suggests that a diet of commercial, washed fruit for adults and commercial, packaged, organic alfalfa meal for larvae resulted in depauperate gut microbiome communities. Fermentative yeasts were completely absent in the laboratory-raised adults, and major bacterial population shifts occurred from one generation to the next, coupled with high morbidity and mortality in the laboratory-raised generation. Providing laboratory-raised beetles fresh-collected fruit and the larvae field-harvested detritus may therefore vastly improve their health and survival.
  • Environmental Impact of Metals Resulting from Military Training Activities: A Review

    Abstract: The deposition of metals into the environment as a result of military training activities remains a longterm concern for Defense organizations across the globe. Of particular concern for deposition and potential mobilization are antimony (Sb), arsenic (As), copper (Cu), lead (Pb), and tungsten (W), which are the focus of this review article. The fate, transport, and mobilization of these metals are complicated and depend on a variety of environmental factors that are often convoluted, heterogeneous, and site dependent. While there have been many studies investigating contaminant mobilization on military training lands there exists a lack of cohesiveness surrounding the current state of knowledge for these five metals. The focus of this review article is to compile the current knowledge of the fate, transport, and ultimate risks presented by metals associated with different military training activities particularly as a result of small arms training activities, artillery/mortar ranges, battleruns, rocket ranges, and grenade courts. From there, we discuss emerging research results and finish with suggestions of where future research efforts and training range designs could be focused toward further reducing the deposition, limiting the migration, and decreasing risks presented by metals in the environment. Additionally, information presented here may offer insights into Sb, As, Cu, Pb, and W in other environmental settings.
  • Approaches to Identify and Monitor for Potential Acid Sulfate Soils in an Ecological Restoration Context

    Purpose: Potential acid sulfate soils include materials with the capacity to generate acidity under certain environmental conditions. As such, these soils can pose challenges to ecological restoration projects occurring in wetlands and nearshore environments. To provide guidance for ecosystem restoration practitioners, the following technical note describes acid sulfate soil formation and distribution and then describes techniques for identifying and monitoring acid sulfate soil conditions prior to and following implementation of restoration activities. Finally, this technical note outlines a number of tools and recently published resources to help avoid unintended consequences of acid sulfate soil disturbance and achieve ecological restoration objectives.