Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Environmental Laboratory (EL)
Clear
  • Implementing Endangered Species Act (ESA) Section 7 (a)(1) Conservation Planning During US Army Corps of Engineers (USACE) Coastal Engineering

    Purpose: This technical note was developed by the US Army Engineer Research and Development Center–Environmental Laboratory (ERDC-EL) to provide guidance to the US Army Corps of Engineers (USACE) on implementing Endangered Species Act* (ESA) Section 7(a)(1) conservation planning, in coordination with the US Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) during coastal engineering projects. USACE expends ~$200–$300 million each year on compliance, conservation, and other activities associated with the ESA (USACE 2022), and these expenditures often exceed those of other federal agencies (for example, US Bureau of Land Management) that have jurisdiction over far greater land holdings than USACE. To streamline the ESA compliance process, lower costs, and generate more positive outcomes for federally listed threatened and endangered species (TES), USACE was directed in June 2015 by the Deputy Commanding General (DCG) for Civil and Emergency Operations to proactively identify and incorporate conservation benefits into all projects when and where opportunities arise, under the authority of Section 7(a)(1) of the ESA (USACE 2015). The DCG identified Section 7(a)(1) conservation planning as a mechanism to efficiently achieve project purposes, create environmental value, and streamline the ESA Section 7(a)(2) consultation process
  • Scenario Analyses in Ecological Modeling and Ecosystem Management

    Purpose: Ecosystem management and restoration practitioners are challenged with complex problems, diverse project goals, multiple management alternatives, and potential future scenarios that change the systems of interest. Scenario analysis aids in forecasting, evaluating, and communicating outcomes of potential management actions under different plausible conditions, such as land-use change or sea level rise. However, little guidance exists for practitioners on the utility and execution of scenario analysis. Therefore, this technical note highlights the usefulness of scenario analysis as a tool for addressing uncertainty in potential project outcomes. The mechanics of the scenario-analysis process are explained, and examples of different types of scenario analyses are described for context on the breadth of its use. Lastly, two hypothetical case studies of scenario analysis in ecological modeling are presented showing a semiquantitative approach for assessing anadromous fish and a quantitative approach examining freshwater mussel habitat. Overall, this technical note provides a brief review of the utility and application of scenario analyses in the context of ecological modeling and ecosystem management decision-making.
  • Effects of Impure Water Sources on Early-Age Properties of Calcium Sulfoaluminate Cements for Rapid Airfield Damage Recovery

    Abstract: In austere environments with limited access to clean water, it is advantageous to use nonpotable water for construction (i.e., mixing water for concrete.) In rapid-response situations such as rapid airfield damage recovery (RADR), the use of calcium sulfoaluminate (CSA) cements is beneficial for expedient pavement repairs because of their rapid strength gain characteristics. However, the hydration products formed by CSA cements are substantially different from those formed by ordinary portland cement and might react differently to impurities that water sources may contain. A laboratory study component investigated the application of various salts and impure sources of mixing water with commercially available CSA cement-based products. A field component studied the application of naturally occurring impure water sources for RADR. Recommendations are made for implementation of impure mixing water for RADR using commercially available flowable fill and concrete products made with CSA cement.
  • Boronic Acid Functionalized Ferrocene Derivatives Towards Fluoride Sensing

    Abstract: In this technical report (TR), a robust, readily synthesized molecule with a ferrocene core appended with one or two boronic acid moieties was designed, synthesized, and used toward F- (free fluoride) detection. Through Lewis acid-base interactions, the boronic acid derivatives are capable of binding with F- in an aqueous solution via ligand exchange reaction and is specific to fluoride ion. Fluoride binding to ferrocene causes significant changes in fluorescence or electrochemical responses that can be monitored with field-portable instrumentation at concentrations below the WHO recommended limit. The F- binding interaction was further monitored via proton nuclear magnetic resonance spectroscopy (1H-NMR). In addition, fluorescent spectroscopy of the boronic acid moiety and electrochemical monitoring of the ferrocene moiety will allow detection and estimation of F- concentration precisely in a solution matrix. The current work shows lower detection limit (LOD) of ~15 µM (285 μg/L) which is below the WHO standards. Preliminary computational calculations showed the boronic acid moieties attached to the ferrocene core interacted with the fluoride ion. Also, the ionization diagrams indicate the amides and the boronic acid groups can be ionized forming strong ionic interactions with fluoride ions in addition to hydrogen bonding interactions.
  • Other Social Effects and Social Vulnerability Analysis: Existing Resources

    Purpose: The following technical note (TN) provides a summary of existing resources available to the US Army Corps of Engineers’ (USACE) districts that address benefits in the Other Social Effects account for evaluating the effects of water resource projects. Consideration of social factors is key to a complete, robust, water-resources analysis, and these resources provide planners and project development teams with approaches and tools for their consideration. "social effects—the constituents of life that influence personal and group definitions of satisfaction, well-being, and happiness —OSE Primer, 3" This TN is limited in scope and does not cover ecosystem goods and services or environmental-quality metrics that can also be used to assess benefits outside of economic benefits from water-resource projects. The following resources and their associated metrics are presented in a manner that is focused on assisting districts during the project-planning phase, although the metrics can be used to assess benefits or impacts during other project phases as well (for example, construction, operations, and maintenance).
  • Two Years of Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 2 years of monitoring were performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Technical Report ERDC/CHL TR-20-14 describes the first year of post-project monitoring and the methodologies employed. This report describes conclusions derived from 2 years of monitoring. While the navigation improvements are largely preventing the channel from infilling, shoaling within is occurring at rates higher than expected. The placement site appears stable and accreting landward; however, there continues to be erosion along the shoreline and through the gaps in the breakwaters. SAV monitoring indicates that SAV is not present in the project footprint, even though turbidity is comparable to the reference area. Physical disturbance of the bottom sediment during construction may explain SAV absence.
  • Simulated Herbicide Spray Retention on Floating Aquatic Plants as Affected by Carrier Volume and Adjuvant Type

    Abstract: Foliar delivery of herbicides is a common means for plant management in aquatic environments. Though this technique is decades old, little is known about vegetative spray retention relative to this application method. A more complete understanding of maximizing herbicide retention could lead to improved plant management while simultaneously decreasing pesticide load in aquatic environments. Therefore, outdoor mesocosm experiments were conducted in 2020 to evaluate the effect of adjuvant type on foliar spray retention in waterhyacinth [Eichhornia crassipes (Mart.) Solms]. Additionally, the effect of carrier volume on spray retention in waterhyacinth, waterlettuce (Pistia stratiotes L.), and giant salvinia (Salvinia molesta D.S. Mitchell) was documented. Spray deposition did not differ among the nine adjuvants tested; however, spray retention was reduced 6% to 11% when an adjuvant was excluded from the spray solution. The effect of carrier volume on spray retention in waterhyacinth, waterlettuce, and giant salvinia was also investigated. Decreases in spray retention were most sensitive to increased carrier volume in waterhyacinth, followed by giant salvinia and waterlettuce. Among species, spray retention potential, as determined by intercept estimates, was greatest in water-lettuce and giant salvinia regardless of carrier volume. Asymptotes estimates for waterhyacinth, waterlettuce, and giant salvinia were 33%, 46%, and 79% spray retention, respectively. In other words, spray retention was the lowest and remained relatively constant at these values for the high carrier volumes tested (935 and 1,870 L ha−1), which were likely due to the presence of pubescence on leaves and flatter leaf architecture represented by waterlettuce and giant salvinia compared to the glabrous vertical leaves of waterhyacinth. Future research will evaluate these concepts under field condition.
  • Evaluation of Multiparameter Water Meter for Environmental Toolkit for Expeditionary Operations

    Purpose: A new, commercially available, field-portable water sensor was evaluated for efficacy during operation and compatibility with current Environmental Toolkit for Expeditionary Operations (ETEO) software. The ETEO provides sensors to Soldiers to rapidly identify and quantify environmental contamination in soil, air, and water at potential new base sites during initial reconnaissance to ensure Soldier safety and minimize unnecessary remediation efforts by the Army. The primary objective of this study was to enhance ETEO performance by providing the capability to evaluate multiple water quality properties simultaneously.
  • A Review of Empirical Algorithms for the Detection and Quantification of Harmful Algal Blooms Using Satellite-Borne Remote Sensing

    Abstract: Harmful Algal Blooms (HABs) continue to be a global concern, especially since predicting bloom events including the intensity, extent, and geographic location, remain difficult. However, remote sensing platforms are useful tools for monitoring HABs across space and time. The main objective of this review was to explore the scientific literature to develop a near-comprehensive list of spectrally derived empirical algorithms for satellite imagers commonly utilized for the detection and quantification HABs and water quality indicators. This review identified the 29 WorldView-2 MSI algorithms, 25 Sentinel-2 MSI algorithms, 32 Landsat-8 OLI algorithms, 9 MODIS algorithms, and 64 MERIS/Sentinel-3 OLCI algorithms. This review also revealed most empirical-based algorithms fell into one of the following general formulas: two-band difference algorithm (2BDA), three-band difference algorithm (3BDA), normalized-difference chlorophyll index (NDCI), or the cyanobacterial index (CI). New empirical algorithm development appears to be constrained, at least in part, due to the limited number of HAB-associated spectral features detectable in currently operational imagers. However, these algorithms provide a foundation for future algorithm development as new sensors, technologies, and platforms emerge.
  • Growth Assessments of Starry Stonewort (Nitellopsis obtusa) in Various Substrate Types for Large-scale Cultivation Studies

    Purpose: The purpose of this study was to compare multiple substrate types to optimize cultivation conditions for the invasive macroalga Nitellopsis obtusa (Desv. in Loisel.) J. Groves, commonly known as starry stonewort. Large-scale cultivation will allow for tiered approaches to management evaluation research while minimizing the influence of confounding variables.