Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Technology
  • Red River Structure Physical Model Study: Bulkhead Testing

    Abstract: The US Army Corps of Engineers, St. Paul District, and its non-federal sponsors are designing and constructing a flood risk management project that will reduce the risk of flooding in the Fargo-Moorhead metropolitan area. There is a 30-mile long diversion channel around the west side of the city of Fargo, as well as a staging area that will be formed upstream of a 20-mile long dam (referred to as the Southern Embankment) that collectively includes an earthen embankment with three gated structures: the Diversion Inlet Structure, the Wild Rice River Structure, and the Red River Structure (RRS). A physical model has been constructed and analyzed to assess the hydraulic conditions near and at the RRS for verification of the structure’s flow capacity as well as optimization of design features for the structure. This report describes the modeling techniques and instrumentation used in the investigation and details the evaluation of the forces exerted on the proposed bulkheads during emergency operations for the RRS.
  • A Novel Laboratory Method for the Detection and Identification of Cyanobacteria Using Hyperspectral Imaging: Hyperspectral Imaging for Cyanobacteria Detection

    Abstract: To assist US Army Corps of Engineers resource managers in monitoring for cyanobacteria bloom events, a laboratory method using hyperspectral imaging has been developed. This method enables the rapid detection of cyanobacteria in large volumes and has the potential to be transitioned to aerial platforms for field deployment. Prior to field data collection, validation of the technology in the laboratory using monocultures was needed. This report describes the development of the detection method using hyperspectral imaging and the stability/reliability of these signatures for identification purposes. Hyperspectral signatures of different cyanobacteria were compared to evaluate spectral deviations between genera to assess the feasibility of using this imaging method in the field. Algorithms were then developed to spectrally deconvolute mixtures of cyanobacteria to determine relative abundances of each species. Last, laboratory cultures of Microcystis aeruginosa and Anabaena sp. were subjected to varying macro (nitrate and phosphate) and micro-nutrient (iron and magnesium) stressors to establish the stability of signatures within each species. Based on the findings, hyperspectral imaging can be a valuable tool for the detection and monitoring of cyanobacteria. However, it should be used with caution and only during stages of active growth for accurate identification and limited interference owing to stress.
  • AIS data case Study: identifying AIS coverage gaps on the Ohio River in CY2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note describes a method for evaluating the received coverage from Automatic Identification System shore sites and the availability of historic vessel position reports along the Ohio River. The network of AIS shoreside sites installed and operated by the US Army Corps of Engineers and the US Coast Guard receive information transmitted from vessels; however, reception of these transmissions is generally line-of-sight between the vessel and the AIS site antenna. Reception may also be affected by factors such as the quality of the transceiver installation aboard the vessel as well as the state of the equipment at the receiving site. Understanding how to define and quantify coverage gaps along the inland river system can inform research utilizing AIS data, provide information on the performance of the AIS network, and provide guidance for efforts to address identified coverage gaps.
  • Topological data analysis: an overview

    Abstract: A growing area of mathematics topological data analysis (TDA) uses fundamental concepts of topology to analyze complex, high-dimensional data. A topological network represents the data, and the TDA uses the network to analyze the shape of the data and identify features in the network that correspond to patterns in the data. These patterns extract knowledge from the data. TDA provides a framework to advance machine learning’s ability to understand and analyze large, complex data. This paper provides background information about TDA, TDA applications for large data sets, and details related to the investigation and implementation of existing tools and environments.
  • New capabilities in CREATE™-AV Helios Version 11

    Abstract: CREATE™-AV Helios is a high-fidelity coupled CFD/CSD infrastructure developed by the U.S. Dept. of Defense for aeromechanics predictions of rotorcraft. This paper discusses new capabilities added to Helios version 11.0. A new fast-running reduced order aerodynamics option called ROAM has been added to enable faster-turnaround analysis. ROAM is Cartesian-based, employing an actuator line model for the rotor and an immersed boundary model for the fuselage. No near-body grid generation is required and simulations are significantly faster through a combination of larger timesteps and reduced cost per step. ROAM calculations of the JVX tiltrotor configuration give a comparably accurate download prediction to traditional body-fitted calculations with Helios, at 50X less computational cost. The unsteady wake in ROAM is not as well resolved, but wake interactions may be a less critical issue for many design considerations. The second capability discussed is the addition of six-degree-of-freedom capability to model store separation. Helios calculations of a generic wing/store/pylon case with the new 6-DOF capability are found to match identically to calculations with CREATE™-AV Kestrel, a code which has been extensively validated for store separation calculations over the past decade.
  • Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis

    Link: paper was originally presented at the American Institute of Aeronautics and Astronautics (AIAA) ScitTech 2020 Technical Panel and published online 4 January 2021. Funding by USACE ERDC under Army Direct funding.Report Number: ERDC/ITL MP-21-10Title: Summary of the SciTech 2020 Technical Panel on In
  • In situ analysis and visualization to enable better workflows with CREATE-AV™ Helio

    Abstract: The CREATE-AV™ Helios CFD simulation code has been used to accurately predict rotorcraft performance under a variety of flight conditions. The Helios package contains a suite of tools that contain almost the entire set of functionality needed for a variety of workflows. These workflows include tools customized to properly specify many in situ analysis and visualization capabilities appropriate for rotorcraft analysis. In situ is the process of computing analysis and visualization information during a simulation run before data is saved to disk. In situ has been referred to with a variety of terms including co-processing, covisualization, coviz, etc. In this paper we describe the customization of the pre-processing GUI and corresponding development of the Helios solver code-base to effectively implement in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts. We showcase how the workflow enables the wide variety of Helios users to effectively work in post-processing tools they are already familiar with as opposed to forcing them to learn new tools in order post-process in situ data extracts being produced by Helios. These data extracts include various sources of information customized to Helios, such as knowledge about the near- and off-body grids, internal surface extracts with patch information, and volumetric extracts meant for fast post-processing of data. Additionally, we demonstrate how in situ can be used by workflow automation tools to help convey information to the user that would be much more difficult when using full data dumps.
  • AIS data case study: quantifying connectivity for six Great Lakes port areas from 2015 through 2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note presents results from a preliminary examination of commercial vessel traffic connectivity between six major port areas on the Great Lakes using Automatic Identification System data collected from 2015 to 2018. The six port areas included in this study are Calumet Harbor, IL and IN; Cleveland, OH; Detroit, MI; Duluth-Superior, MN and WI; Indiana Harbor, IN; and Two Harbors, MN. These six locations represent an important subset of the more than 100 federally authorized navigation projects in the Great Lakes maintained by the US Army Corps of Engineers. The results are presented in the context of USACE resilience-related policy initiatives as well as the larger topic of maritime system resilience.
  • Multi-objective source scaling experiment

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) performed an experiment at a site near Vicksburg, MS, during May 2014. Explosive charges were detonated, and the shock and acoustic waves were detected with pressure and infrasound sensors stationed at various distances from the source, i.e., from 3 m to 14.5 km. One objective of the experiment was to investigate the evolution of the shock wave produced by the explosion to the acoustic wavefront detected several kilometers from the detonation site. Another objective was to compare the effectiveness of different wind filter strategies. Toward this end, several sensors were deployed near each other, approximately 8 km from the site of the explosion. These sensors used different types of wind filters, including the different lengths of porous hoses, a bag of rocks, a foam pillow, and no filter. In addition, seismic and acoustic waves produced by the explosions were recorded with seismometers located at various distances from the source. The suitability of these sensors for measuring low-frequency acoustic waves was investigated.
  • Challenges in evaluating efficacy of scientific visualization for usability and aesthetics

    Abstract: This paper presents the results of a study to evaluate the efficacy of scientific visualization for multiple categories of users, including both domain experts as well as users from the general public. Efficacy was evaluated for understanding, usability, and aesthetic value. Results indicate that aesthetics play a critical, but complex role in enhancing both user understanding and usability.