Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Engineer Research & Development Center (ERDC)
  • Framework Geology of Cape Shoalwater and Northwest Willapa Bay, Washington: Assessing Potential Geologic Impacts on Recent Shoreline Change

    Abstract: The shoreline along Cape Shoalwater and northwest Willapa Bay has experienced the highest rates of erosion along the entire Pacific Coast of the United States, due in part to rapid northward migration of the navigation channel. Recently, channel migration and shoreline erosion in this region have slowed, but the cause of this relative stabilization, and thus the longevity of these new patterns, is unknown. Given the complex neotectonics and geologic framework of the southern coast of Washington, it is possible that underlying, erosion-resistant geologic units have become exposed along the channel and/or in the nearshore, and are acting to reduce or halt channel migration and/or shoreline erosion. Conversely, the apparent reduction may be due to subtle, short-term changes in regional hydrodynamics and/or sediment transport, and thus future rates of channel migration and/or shoreline erosion might increase back to historical rates. The purpose of this special report is to detail the geologic and neotectonic framework of the northern Willapa Bay region, and determine how the underlying framework geology might be impacting channel stability and adjacent shoreline erosion rates. Suggested research questions to quantify potential geologic control are also presented, including the potential benefits of the research to the district.
  • Documenting Engineering with Nature® Implementation within the US Army Corps of Engineers Baltimore District – Completed Projects and Opportunities for Chronosequence Analysis

    Purpose:  The following documents the beneficial use of dredged materials in a subset of shallow draft navigation projects conducted by the US Army Corps of Engineers (USACE) Baltimore District between 1904 and 2016. The available data demonstrates (1) the expansion of beneficial uses of dredged materials over time incorporating Engineering With Nature® (EWN) approaches and (2) provides baseline information supporting chronosequence studies of habitat restoration/creation trajectories designed to evaluate project success.
  • Laboratory Evaluation of Aquablok™ Erosion Resistance: Implications for Geotechnical Applications

    Abstract: AquaBlok™ (AB) is a commercial product traditionally used as an alternative material for contaminated sediment capping applications. Previous studies of AB capping performance have reported enhanced stabilization through increased erosion resistance. Subsequently, AB has been considered for use as an alternative levee repair material due to its cohesive properties. Through a series of laboratory experiments, this study investigated the erosion behavior of new AquaBlok formulations (10%, 20%, and 30% clay by weight) under increased shear stresses previously unachievable in the previous tests. The new AquaBlok formulations were tested in non-compacted and compacted states to simulate the physical properties in capping and levee repair applications. In the non-compacted state, excess hydration of the clay matrix extended approximately 5 cm below the bed surface, which greatly reduced erosion resistance and was independent of clay percentage. Below this horizon, critical shear stress increased, and erosion rates decreased, with clay percentage, respectively. However, this does not consider a continuous change in hydration state when exposed to free water. In the compacted state, erosion rates were greatly arrested, with measureable erosion only possible under the maximum applied shear stress (24 Pa). The results are discussed in the context of capping and levee applications.
  • Understanding the Disease Vector Operational Environment by Predicting Presence of Anopheles Mosquito Breeding Sites Using Maximum Entropy Modeling and the Maxent Software Platform

    Purpose: This technical note (TN) describes research using the maximum entropy model to predict the presence of breeding sites for mosquitos of the genus Anopheles throughout the Korean peninsula. This methodology is also applicable to many other types of ecological niche modeling problems where analysts only have access to data related to the location a species has been found. The purpose of this study is to help address the need for new and innovative methods that promote military readiness through better understanding of vector-borne disease threats in familiar and unfamiliar operational environments. These methods can be used to provide military planners with valuable information to support their operations, particularly when operations expand into areas lacking direct disease vector surveillance. Disease vector risk information is vital for force readiness, because historically, soldiers are more likely to be unable to perform warfighting due to disease and non-combat injuries than as a direct result of combat (U.S. Department of the Army 2015).
  • A First Examination of the Interaction between Alternaria alternantherae and Agasicles hygrophila on Alternanthera philoxeroides

    PURPOSE: The use of an alligatorweed (Alternanthera philoxeroides) insect biological control agent, alligatorweed flea beetle (Agasicles hygrophila Selman and Vogt), and the leaf spot plant pathogen, alligatorweed leaf pathogen (Alternaria alternantherae Holcomb and Antonopoulis), may provide enhanced control of alligatorweed infestations if competitive interactions between agents are minimal and damage to host plants are synergistic. However, to assess suitability of co-use of these two agents, it is necessary to first identify whether introduction of one may impact performance of the other. This technical note details a first examination of competitive interactions between A. hygrophila and A. alternantherae under varied temperature and host nutritional conditions. Presented are the results of laboratory experimentation and recommendations for future research.
  • Using Unmanned Aircraft System (UAS) and Satellite Imagery to Map Aquatic and Terrestrial Vegetation

    Purpose: The purpose of this study is to demonstrate the application potential of using unmanned aerial systems (UAS) combined with a time series of moderately high-resolution satellite imagery for mapping ecological restoration progress and resulting land cover changes. This technical note addresses a project under the US Army Corps of Engineers Ecosystem Management and Restoration Research Project (EMRRP) focusing on image acquisition and assessment, digital image processing techniques, analytical methodology, geospatial product development, and documentation of best practice for future data acquisition and analysis in support of ecological management efforts.
  • Autonomous Vehicle Pilot at Joint Base Myer-Henderson Hall: Project Report Summary and Recommendations

    Abstract: Military installations serve as strategic staging areas that are integral to national security. The Army is currently reconsidering how it views its installations as part of the battle space under multi-domain operations, which includes technology modernization efforts, such as the rapidly expanding field of connected and autonomous vehicle (CAV) technology. The DoD community and military installations have an interest in investigating autonomous transportation systems to determine their potential role in a broad range of military applications. CAVs capture, store, and analyze tremendous amounts of data. Military installations need to understand the data systems and processes involved in CAV deployments. To that end, the Army is conducting pilot projects that deploy updated and commercially-available CAVs on installations and within adjacent com-munities to further demonstrate their use and conduct research and development to optimize and inform the integration of this emerging technology. This report documents the deployment of Autonomous Vehicle (AV) technologies at Joint Base Myer-Henderson Hall for a 90-day pilot study to evaluate a commercially-available AV.
  • Raster-Based Floristic Quality Index: Proof of Concept

    Purpose: The purpose of this study was to develop and demonstrate a raster-based floristic quality index (FQIraster) as a proof of concept. This raster-based approach leverages many of the advantages of high spatial, spectral, and temporal resolution space-borne imagery as well as established remote sensing techniques (vegetation indices and feature classification) to provide rapid measures of vegetation productivity and biodiversity. The developed method should provide researchers and managers a new tool for quantifying and tracking the condition, response, and recovery of expansive wetland landscapes.
  • Fusion of Spectral Data from Multiple Handheld Analyzers (LIBS, XRF and Raman) for Chemical Analysis and Classification of Soil

     Abstract:  An 18-month multidisciplinary project was undertaken by JRPlumer & Associates, LLC and four subcontractors that had three technical objectives: (i) to upgrade current handheld technology for chemical analysis by X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy (RS), and laser-induced breakdown spectroscopy (LIBS); (ii) to design a multisensor system based on these technologies for the rapid, in-situ chemical analysis of soils and other materials of military interest; and (iii) to investigate the classification/discrimination performance benefit that might be achieved through advanced signal pre-processing and data fusion with XRFS, RS, and LIBS analyses acquired for four suites of natural soils. Accomplishments of the program in the latter area are described in this report.
  • South Atlantic Division (SAD) Regional Sediment Management Optimization Pilot

    Purpose: The US Army Corps of Engineers (USACE) South Atlantic Division (SAD) Regional Sediment Management Optimization Pilot (RSM-OP) Tool was developed and implemented under a pilot effort to help define sustainable solutions across USACE missions and to support regional implementation strategies across project business lines. The goals of the RSM-OP are to (1) develop and provide an actionable and optimized Regional Sediment Management (RSM) strategy on a USACE division scale that will most efficiently execute the Navigation (NAV) and Flood Risk Management (FRM) Business Line budgets and (2) maximize the amount of dredging while also increasing the amount of RSM opportunities implemented to create value to the nation. Value created and funding saved as identified through the RSM-OP will allow the USACE to execute a greater number of projects under flatlined or reduced budgets. While RSM principles and strategies have been explored and implemented in many USACE districts, the RSM-OP is the first comprehensive approach to define and optimize RSM opportunities for coastal NAV and FRM projects and to quantify economic benefits across a USACE division.