Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Engineer Research & Development Center (ERDC)
  • Historic Context for the WWII Internment and Prisoner-of-War (POW) Compound at Fort McCoy, Wisconsin

    Abstract: This report provides a comprehensive historic context for the enemy alien internment compound and prisoner-of-war (POW) compound at Fort McCoy, Wisconsin, during World War II (WWII). Through primary and secondary sources, it illustrates the development of the internment and POW program at the installation, the built environment, labor details, and aspects of daily life. Although buildings associated with the internment and POW compound are no longer extant, researchers georeferenced historic maps of the compound to create digital footprints of the demolished infrastructure. Additionally, researchers generated and analyzed lidar returns to accentuate the signatures of former building foundations. Together, these processes can help fieldwork investigators determine the approximate locations of former internment and POW infrastructure.
  • Framework Development for Rapid Assessment and Economic Valuation of Feral Swine Damage to Wetland Terrain: A Pilot Study at US Army Corps of Engineers–Somerville Lake, Texas

    Abstract: The increased spread and presence of feral swine on sensitive natural resources landscapes like wetlands has become a considerable concern on lands managed by the US Army Corps of Engineers. In August 2021 a pilot study was carried out at Somerville Lake, Texas, as the first step in a three-year research plan to develop an ecological-economic framework for feral swine damage assessments (FSDA) and valuation. The study sought to quantify and value soil disturbance caused by feral swine trampling, rooting, and wallowing on wetland soils. The primary objective—to develop and test a rapid FSDA prototype—was achieved and represents an important first step to creating a quick and user-friendly damage-assessment framework that also estimates the economic value of the damage observed. With continued testing and development, this rapid FSDA protocol will be of use to all who manage feral swine impacts on landscapes with wetland ecosystems, and findings from this information will be of use for scientifically informed cost-benefit analysis and management decision-making.
  • Considerations for Integrating Ecological and Hydrogeomorphic Models: Developing a Comprehensive Marsh Vegetation Model

    PURPOSE: Predictive models for salt marsh management require a systems perspective that recognizes the dynamic interactions between physical and ecological processes. It is critical to link physical process and landscape evolution models to quantify hydro-eco-geomorphic feedbacks in marsh environments. A framework that explicitly defines how to integrate these disparate models is a necessary step towards developing a comprehensive marsh model. This technical note (TN) proposes an approach to integrate existing hydrodynamic and geomorphic models with a mechanistic vegetation model into a coupled framework to better simulate salt marsh evolution.
  • Amphibious Uncrewed Ground Vehicle for Coastal Surfzone Survey

    Abstract: The capability of a commercial off-the-shelf amphibious bottom crawling robot is explored for surveying seamless topography and bathymetry across the beachface, surfzone, and very nearshore. A real-time-kinematic (RTK) antenna on a mast was added to the robotic platform, a Bayonet-350 (previously the C2i SeaOx). Data collected from the robot were compared with those collected by the Coastal Research Amphibious Buggy (CRAB) and the Lighter Amphibious Resupply Cargo (LARC), unique amphibious vessels capable of collecting seamless topography and bathymetry in use for decades at the US Army Engineer Research and Development Center’s Field Research Facility (FRF). Data were compared on five different days in a range of wave conditions (Hs < 1 m in 8-m depth) resulting in a root-mean square difference of 8.7 cm and bias of 2 cm for 24 different cross-shore profile comparisons. Additionally, a repeatability test was performed to assess measurement uncertainty. The repeatability test indicated a total vertical uncertainty (TVU) of 5.8 cm, with the highest spatial error at the shoreline.
  • An Elastic-Inelastic Model and Embedded Bounce-Back Control for Layered Printing with Cementitious Materials

    Abstract: This paper presents a finite-deformation model for extrusion-based layered printing with cementitious materials. The evolution of mechanical properties as the printed material cures and stiffens results in nonphysical reduction in the magnitude of elastic strains when standard constitutive models are employed. This elastic recovery of the printing induced deformation contradicts the experimentally observed behavior of the printed cementitious materials that harden at a nearly-frozen deformed state. A thermodynamically motivated constraint on the evolution of elastic strains is imposed on the constitutive model to remedy the nonphysical bounce-back effect. An algorithm that is based on a strain-projection technique for the elastic part of deformation is developed that complements the inelastic response given by the Drucker–Prager model. It is then embedded in a finite strain finite element framework for the modeling and simulation of cure hardening and inelastic response of the early age cementitious materials. A ghost mesh method is proposed for continuous layer-wise printing of the material without the need for intermittent mesh generation technique or adaptive remeshing methods. The model is validated via comparison with experimental data and representative test cases are presented that investigate the mathematical and computational attributes of the proposed model.
  • Levees and Dams at Fort Riley, Kansas, and the Response to the 1951 Flood

    Abstract: This project provides a historic context and inventory for the levees and dams constructed at Fort Riley, Kansas. The purpose of this historic con-text and inventory is to determine the levees and dams’ eligibility for listing in the National Register of Historic Places (NRHP). Determinations of eligibility to the NRHP are then made based on the significance of the levees and dams and the degree to which they retain their integrity for conveying that significance. The authors inventoried and evaluated three levees and two lake dams on the installation. Based on the historic context and inventory, researchers for this project have determined that none of the levees and dams are eligible for the inclusion in the NRHP nor was there enough evidence for a noncontiguous historic district at Fort Riley.
  • Classifying and Benchmarking High-Entropy Alloys and Associated Materials for Electrocatalysis: A Brief Review of Best Practices

    Abstract: In light of the immense compositional diversity of high-entropy materials (HEMs) recently reported (e.g., high-entropy chalcogenides, perovskites, ceramics, etc.) and the relatively amorphous definition of High-Entropy, it is imperative that consistent material classification and benchmarking practices be employed to facilitate comparison between reported figures of merit. In this opinion, an updated form of the numerical high entropy definition is reviewed, which renders a universal entropy metric applicable to high-entropy alloys and emerging HEMs alike. Analytical methods to verify the existence of a solid-solution microstructure, elucidate atomic valence states, and probe atomic disorder are discussed with literature examples to facilitate the physical classification of HEMs. Electrocatalytic benchmarking is discussed in the context of water splitting reactions and best practices are reviewed for determining the electrocatalytically active surface area, reaction overpotential, and electrocatalyst stability.
  • Simulated Barge Impacts on Fiber-Reinforced Polymers (FRP) Composite Sandwich Panels: Dynamic Finite Element Analysis (FEA) to Develop Force Time Histories to Be Used on Experimental Testing

    Abstract: The purpose of this study is to evaluate the dynamic response of fiber-reinforced polymer (FRP) composite sandwich panels subjected to typical barge impact masses and velocities to develop force time histories that can be used in controlled experimental testing. Dynamic analyses were performed on FRP composite sandwich panels using the finite element method software Abaqus/Explicit. The “traction-separation” law in the Abaqus software is used to define the cohesive surface interaction properties to evaluate the damage between FRP composite laminate layers as well as the core separation within the sandwich panels. Numerical models were developed to better under-stand the damage caused by barge impacts and the effects of impacts on the dynamic response of composite structures. Force, displacement, and velocity time histories were obtained with finite element modeling for several mass and velocity cases to develop experimental testing procedures for these types of structures.
  • An Examination of Multihazard Marine Transportation System (MTS) Response and Recovery Operations during the 2020 Hurricane Season

    Abstract: The Committee on the Marine Transportation System (CMTS), Resilience Integrated Action Team (RIAT), was established in 2014 to foster the coordination and coproduction of knowledge that incorporates the concepts of resilience into the marine transportation system (MTS). The RIAT defines resilience as a four-phase cycle that incorporates preparation, response, recovery, and adaptation activities to minimize disruption to the MTS. The RIAT utilizes this definition of resilience to convene first-responder CMTS agencies to examine challenges and successes and make recommendations about past hurricane seasons. The 2020 hurricane season saw a record-breaking number of storms form in the Atlantic basin during a global pandemic. As a result, federal agencies were challenged to operate in a multihazard posture, and many former lessons learned needed to be adjusted to this unprecedented situation.
  • CRREL Environmental Wind Tunnel Upgrades and the Snowstorm Library

    Abstract: Environmental wind tunnels are ideal for basic research and applied physical modeling of atmospheric conditions and turbulent wind flow. The Cold Regions Research and Engineering Laboratory's own Environmental Wind Tunnel (EWT)—an open-circuit suction wind tunnel—has been historically used for snowdrift modeling. Recently the EWT has gone through several upgrades, namely the three-axis chassis motors, variable frequency drive, and probe and data acquisition systems. The upgraded wind tunnel was used to simulate various snowstorm conditions to produce a library of images for training machine learning models. Various objects and backgrounds were tested in snowy test conditions and no-snow control conditions, producing a total of 1.4 million training images. This training library can lead to improved machine learning models for image-cleanup and noise-reduction purposes for Army operations in snowy environments.