Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Category: Publications: Engineer Research & Development Center (ERDC)
  • Acoustic Doppler Current Profiler Study of Water and Sediment Movement through a Deep Scour Hole in the Lower Mississippi River

    Abstract: A series of acoustic Doppler current profiler (ADCP) transects were collected through a deep scour hole at the bend near River Mile 60 on the Lower Mississippi River. The measurements were collected during both a low and a high flow. The ADCP results show a 3D flow field through the deep bend. The backscatter intensity of the ADCP measurements indicates the majority of the sediment remains close to the inside of the bed and high in the water column, with minimal concentrations at the bottom of the bend. These findings have implications for numerical sediment transport models, which tend to deposit material at the bottom of deep scour holes like the one in this study
  • Soil-Moisture Estimation of Root Zone through Vegetation-Index-Based Evapotranspiration-Fraction and Soil-Properties (SERVES) User’s Manual Version 1.0

    Purpose: The purpose of this user’s guide is to provide background methods and implementation guidance on the Soil-moisture Estimation of Root Zone through Vegetation-Index-Based Evapotranspiration-Fraction and Soil-Properties (SERVES) model (Pradhan 2019).
  • Sustainable bank and channel stabilization techniques in arid southwest streams

    Abstract: Channel stabilization and enhancement approaches take many different forms and are implemented using varying construction methods, materials, and techniques. The purpose of this study is to provide a comprehensive evaluation of sustainable streambank stabilization measures that are typically applied in arid southwest (SW) streams. This study was conducted at the request of the US Army Corps of Engineers (USACE), Albuquerque District (SPA), and USACE Headquarters. The document also provides rationale for evaluating bank and bed stabilization measures.
  • Phase-Modulated Rice Model for Statistical Distributions of Complex Signals

    Abstract: The basic Rice model is commonly used to describe complex signal statistics from randomly scattered waves. It correctly describes weak (Born) scattering, as well as fully saturated scattering, and smoothly interpolates between these extremes. However, the basic Rice model is unsuitable for situations involving scattering by random inhomogeneities spanning a broad range of spatial scales, as commonly occurs for sound scattering by turbulence in the atmospheric boundary layer and other scenarios. In such scenarios, the phase variations are often considerably stronger than those predicted by the basic Rice model. Therefore, the basic Rice model is extended to include a random modulation in the signal phase, which is attributable to the influence of the largest, most energetic inhomogeneities in the propagation medium. Various joint and marginal distributions for the complex signal statistics are derived to incorporate the phase-modulation effect. Approximations of the phase-modulated Rice model involving the Nakagami distribution for amplitude, and the wrapped normal and von Mises distributions for phase, are also developed and analyzed. The phase-modulated Rice model and various approximations are shown to greatly improve agreement with simulated data for sound propagation in the near-ground atmosphere.
  • Bridge Resource Inventory Database for Gap Emplacement Selection (BRIDGES)

    Abstract: Wet gap crossings are one of the most complex maneuvers undertaken by military engineers, who, along with engineer planners, require better tools to increase the capacity for efficient use of limited bridging resources across the battlespace. Planning for bridging maneuvers often involves a complicated and inefficient system of ad hoc spreadsheets combined with an overreliance on the personal experience and training of subject matter experts (SMEs). Bridge Resource Inventory Database for Gap Emplacement Selection (BRIDGES) uses interactive mapping and database technology in order to streamline the bridging planning process and provide answers to question about myriad scenarios to maximize efficiency and provide better means of data persistence across time and data sharing across operational or planning units.
  • Adverse Outcome Pathways for Engineered Systems

    Abstract: Companies and organizations around the world spend massive amounts of money each year to discover, predict, and remediate failures within engineered systems. These tasks require individuals with specialized knowledge in a variety of topics related to failure. This knowledge is often acquired through years of academic and on-the-job training centered around the review of scientific documentation such as books, reports, manuals, and peer-reviewed publications. The loss of this knowledge through employee attrition can be detrimental to a group as knowledge is often difficult to reacquire. The aggregation and representation of known failure mechanisms for engineered materials could aid in the sharing of knowledge, the acquisition of knowledge, and the discovery of failure causes, reducing the risk of failure. Thus, the current work proposes the Adverse Outcome Pathway for Engineered Systems (AOP-ES) framework, an extension of the Adverse Outcome Pathway used in toxicology. The AOP-ES is designed to document failure knowledge, enabling knowledge transfer and the prediction of failures of novel engineered materials based on the performance of similar materials. This paper introduces the AOP-ES framework and its key elements alongside the principles that govern the framework. An application of the framework is presented, and additional benefits are explored.
  • Testing Expedient Ground Anchor Solutions for Guyed Towers in Remote Cold Regions: Considerations for Cold Remote Regions with Limited Tools

    Abstract: Ground anchors connected to guy wires for tower structures in cold climates suffer from frost heaving, which causes loss of wire tension and subsequent structural instability. It is necessary to understand what ground anchors are available to resist this tendency yet are still capable of expedient installation in remote areas. To that end, three metal, traditional ground-anchor types (arrowhead, bullet, and penetrating auger) and one novel polyvinyl chloride (PVC) T-post anchor were evaluated in frozen gravels and frozen silts at a research facility in Fairbanks, Alaska. Criteria included installation capability, failure loading, and removal ability. Additionally, expedient installation techniques for use in field conditions were also demonstrated. All three traditional ground anchors failed to penetrate frozen gravels. The penetrating auger also failed to penetrate frozen silts, but the arrowhead and bullet anchors did penetrate frozen silts with difficulty. The PVC anchor is capable of being installed only in a predrilled pilot hole. Under flexural load, the arrowhead anchor cable failed at 3686.72 lb, and the bullet anchor cable failed at 1753.44 lb. The PVC slid out of its hole at a direct-pull force of 1978.24 lb and failed under flexural stress at 202.32 lb.
  • Docker Containers and Images for Robot Operating System (ROS)–Based Applications

    Abstract: Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. Containers allow a developer to package and ship out an application with all of the parts it needs, such as libraries and other dependencies. Herein, we investigate using a Docker image to deploy and run our Robot Operating System (ROS)–based payload on a robot platform. Ultimately, this would allow us to quickly and efficiently deploy our payload on multiple platforms.
  • Geomorphic Assessment of the St. Francis River: Between Wappapello Lake and Lake City

    Abstract: The St. Francis River is a complex system that lies in the historic floodplain of the Mississippi and Ohio Rivers. The basin has undergone extensive anthropogenic modifications, including reservoir construction, large-scale channelization, and construction of leveed floodways. Several analyses of available gage data, lidar data, and historical research have provided a picture of geomorphic trends and an overall understanding of the river’s stability. The types of analysis used to determine trends included yearly low stage plots, stage-duration curves, specific gage analysis, water surface slopes, and stream power changes. The results from these analyses were synthesized to develop an overall assessment of the reach. Channel cutoffs resulted in a significant decrease in channel length and sinuosity and triggered geomorphic change throughout the river. Immediately following channelization, dramatic decreasing trends in stage were observed for Fisk and Dekyn’s Store, while St. Francis and Holly Island began to aggrade. Slopes and stream power were significantly increased for the upper portion of the study area and showed a decreasing trend for the lower reach.
  • A Review of Sensor-Based Approaches for Monitoring Rapid Response Treatments of cyanoHABs

    Abstract: Water quality sensors are dynamic and vary greatly both in terms of utility and data acquisition. Data collection can range from single-parameter and one-dimensional to highly complex multiparameter spatiotemporal. Likewise, the analytical and statistical approaches range from relatively simple (e.g., linear regression) to more complex (e.g., artificial neural networks). Therefore, the decision to implement a particular water quality monitoring strategy is dependent upon many factors and varies widely. The purpose of this review was to document the current scientific literature to identify and compile approaches for water quality monitoring as well as statistical methodologies required to analyze and visualize highly diverse spatiotemporal water quality data. The literature review identified two broad categories: (1) sensor-based approaches for monitoring rapid response treatments of cyanobacterial harmful algal blooms (cyanoHABs), and (2) analytical tools and techniques to analyze complex high resolution spatial and temporal water quality data. The ultimate goal of this review is to provide the current state of the science as an array of scalable approaches, spanning from simple and practical to complex and comprehensive, and thus, equipping the US Army Corps of Engineers (USACE) water quality managers with options for technology-analysis combinations that best fit their needs.