Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Engineer Research & Development Center (ERDC)
Clear
  • Stage Frequency Analysis from Snowmelt Runoff near Utqiaġvik, Alaska

    Abstract: For the village of Utqiaġvik, located at the North Slope of Alaska, a stone-armored revetment along the coastline is proposed to reduce coastal erosion. The inner drainage capacity of the revetment must be sufficient to handle seasonal runoff from snowmelt. For this effort, we investigated the snowmelt runoff and the hydraulic impact at the watershed outlet using numerical snow and hydraulic modeling of the study area. We validated the snow model results by comparing simulated snow water equivalent (SWE) values to field measurements. Additionally, the snow model was validated using satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area (SCA) products and time-lapse camera imagery during snowmelt. Our results indicate that the simulated SWE and snowmelt dates agree closely with measured values. The timing of modeled runoff onset was less accurate due to natural processes that delay snowmelt runoff such as snow dams and refreeze. The effect of the uncertainty from both runoff timing and volume was addressed with a Monte Carlo simulation of stage-frequency curves for the lagoons that receive snowmelt runoff. These stage-frequency curves can be used directly in the design of outlet, drainage or discharge structures for the proposed revetment.
  • Initial Data Collection from a Fiber-Optic-Based Dam Seepage Monitoring and Detection System

    Abstract: Visual inspection is the most used method to detect seepage at dams. Early detection can be difficult with this method, and use of appropriate real time monitoring could significantly increase the chances of recognizing possible failure. Seepages can be identified by analyzing changes in water and soil temperature. Optical fiber placed at the embankment’s downstream toe has been proven to be an efficient means of detecting real time changes at short intervals over several kilometers. This study aims to demonstrate how temperatures measured using fiber optic distributed sensing can be used to monitor seepage at Moose Creek Dam, North Pole, Alaska. The fiber optic cable portion of the monitoring system is installed along a section of the embankment where sand boils have occurred. Though no flood event occurred during this monitoring period, routine pumping tests of nearby relief wells resulted in an increase of soil and water temperature (up to 13°C) along a 100 m section where sand boils were detected during the 2014 flood events. Measurements during a flood event are expected to provide a quantitative assessment of seepage and its rate.
  • Considering Sediment Beneficial Use Options at Lake Michigan Harbors in Wisconsin

    Abstract: In 2020 the US Army Corps of Engineers (USACE) reassigned 14 federally maintained harbors in the Wisconsin waters of Lake Michigan to USACE–Chicago District. The administrative change presents opportunities for in-creased beneficial use of sediment at harbors that have not traditionally placed sediment beneficially. This paper summarizes a screening-level analysis of 12 harbors to determine which harbors are likely to have sediment appropriate for beneficial use in the future, either in water or upland. The harbors were qualitatively ranked according to the potential for future successful beneficial use of navigationally dredged sediment. Using this screening, data needs were defined and next steps to aid the development of a regional dredged-material management plan were identified.
  • Phase I Geothermal Opportunities Assessment of the Delta Junction Area, Alaska

    Abstract: To enhance energy resilience at military installations in Interior Alaska, we are exploring geothermal energy, which harvests Earth’s heat to provide thermal energy, electricity, or both. Parts of Interior Alaska have high subsurface heat flow, likely related to high-heat-producing granites. While electric load is usually the focus of energy resilience; in cold regions, the thermal load dominates energy demand, and operations can be sensitive to it. A local geothermal energy source enhances energy resilience by providing baseload energy and lessening supply chain demand. Geothermal energy technology is mature and often economical, but resource location and assessment remain challenging. We present exploration methods for a geothermal feasibility study for Interior Alaska and Phase I prefeasibility study results assessing opportunities to develop geothermal at Fort Greely, Alaska. We present possible geothermal resource types, their potential uses, likelihood of existence, and development risk. We also present custom methodology for locating the resources, associated uncertainty, and the impact of finding each resource. Phase I shows geothermal at Fort Greely survives the elimination test. Investment into a Phase II field study to address knowledge gaps should consider the higher risk in comparison to other geothermal plays due to new methodology and sparse existing data.
  • DataSwitch Data Sweeper (DS)2

    Purpose: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to specify the software requirements, architecture, and detailed design for the DataSwitch Data Sweeper (DS)² application. This document is designed for the software developers maintaining (DS)² and is intended to aid these developers in understanding its architecture and underlying functionality.
  • Guidelines for How to Approach Thin-Layer Placement Projects

    Abstract: Historically, dredged material (DM) has been placed at the nearest available placement site. There has been an increasing trend of beneficial use projects recently, often using innovative methods. Thin-layer placement (TLP) involves one- to two-foot-thick DM placement, compared to traditional, thicker sediment placement applications, to restore coastal wetlands. The main idea of TLP is to promote the natural recolonization or reestablishment of habitat and benthic species. These guidelines present a roadmap of TLP’s evolution and offer easily digestible examples and considerations for TLP applications in wetlands and open-water environments. Offered as a tool to the practitioner, the eight chapters of these guidelines cover the history of TLP, characterization of the project area, setting goals and objectives, project design, construction considerations, monitoring and adaptive management, knowledge gaps, and future research needs. Several case studies are presented as examples of how such applications have been implemented and highlight lessons learned, particularly best-management practices. These guidelines offer consideration of TLP as a critical component in the project development phase, a tool for the sustainable management of DM, and a method that may create, maintain, enhance, or restore ecological function while supporting navigation channel infrastructure and providing flood risk management benefits.
  • Fort Riley Firing Ranges and Military Training Lands: A History and Analysis

    Abstract: The US Congress codified the National Historic Preservation Act of 1966 (NHPA), the nation’s most effective cultural resources legislation to date, mostly through establishing the National Register of Historic Places (NRHP). The NHPA requires federal agencies to address their cultural resources, which are defined as any prehistoric or historic district, site, building, structure, or object. Section 110 of the NHPA requires federal agencies to inventory and evaluate their cultural resources, and Section 106 requires them to determine the effect of federal undertakings on those potentially eligible for the NRHP. Fort Riley is in north-central Kansas within Riley and Geary Counties. It consists of six functional areas, including the Main Post, Camp Funston, Marshall Army Airfield (MAAF), Camp Whitside, Camp Forsyth, and Custer Hill. This report provides a historic context for ranges, features, and buildings associated with the post’s training lands in support of Section 110 of the NHPA.
  • Evaluation of Venturi Pump Blower Attachment Prototype

    Purpose: The US Air Force Civil Engineer Center (AFCEC) tasked the US Army Engineer Research and Development Center (ERDC) with (1) developing a prototype venturi pump blower attachment for removing standing water from open excavations and (2) comparing its performance to that of traditional pumps. This technical note summarizes testing conducted as a part of the development of the prototype and provides analysis and conclusions based on the results.
  • Pilot-Scale Optimization: Research on Algae Flotation Techniques (RAFT)

    Abstract: The impacts of harmful algal blooms (HABs) on US national waterways continue to cause significant economic and environmental damage. Researchers at the US Army Engineer Research and Development Center (ERDC) successfully demonstrated the Research on Algae Flotation Techniques (RAFT) project at pilot scale. This study was designed to show that the surface concentrations of algal biomass can be effectively increased with near linear scalability utilizing the natural methods by which some algae entrap air within excreted mucilage for flotation. The surface concentration of cyanobacteria measured as phycocyanin pigment increased by six-fold after RAFT flocculation treatment. Further optimization of chemical delivery systems, mixing, and dissolved air exposure will be required before full scale readiness.
  • Proceedings from the Soft Substrate Island Design Workshop

    Abstract: This report summarizes the activities of the Soft Substrate Design Workshop held virtually on 08 September 2021. The 28 participants from federal, state, local, and academic organizations discussed designing and constructing islands with soft sediments in inland waterways. They were introduced to the US Army Corps of Engineers’ (USACE) Engineering With Nature® (EWN®) initiative and the vision for Tri-County Planning Commission (Peoria, Illinois). An overview of collaborative projects using landscape architecture and EWN principles was provided. The focus of discussion was on two primary waterways, the Upper Mississippi River System, and Illinois River. Participants discussed their experience associated with designing and constructing islands with and on soft sediments prior to breakout sessions to discuss specific design and contracting elements. The groups were brought together to discuss design techniques that could be implemented in the Upper Mississippi River and Illinois River systems.