Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

  • National Ordinary High Water Mark Field Delineation Manual for Rivers and Streams : Interim Version

    Abstract: The ordinary high water mark (OHWM) defines the lateral extent of nontidal aquatic features in the absence of adjacent wetlands in the United States. The federal regulatory definition of the OHWM, 33 CFR 328.3(c)(7), states the OHWM is “that line on the shore established by the fluctuations of water and indicated by physical characteristics such as [a] clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas.” This is the first manual to present a methodology for nationwide identification and delineation of the OHWM. A two-page data sheet and field procedure outline a weight-of-evidence (WoE) methodology to organize and evaluate observations at stream sites. This manual presents a consistent, science-based method for delineating the OHWM in streams. It also describes regional differences and challenges in identifying the OHWM at sites disturbed by human-induced or natural changes and illustrates how to use remote data to structure field inquiries and interpret field evidence using the principles of fluvial science. The manual demonstrates that, in many landscape settings, the OHWM may be located near the bankfull elevation.
  • Helicopter Rotor Blade Planform Optimization Using Parametric Design and Multi-Objective Genetic Algorithm

    Abstract: In this paper, an automated framework is presented to perform helicopter rotor blade planform optimization. This framework contains three elements, Dakota, ParBlade, and RCAS. These elements are integrated into an environment control tool, Galaxy Simulation Builder, which is used to carry out the optimization. The main objective of this work is to conduct rotor performance design optimizations for forward flight and hover. The blade design variables manipulated by ParBlade are twist, sweep, and anhedral. The multi-objective genetic algorithm method is used in this study to search for the optimum blade design; the optimization objective is to minimize the rotor power required. Following design parameter substitution, ParBlade generates the modified blade shape and updates the rotor blade properties in the RCAS script before running RCAS. After the RCAS simulations are complete, the desired performance metrics (objectives and constraints) are extracted and returned to the Dakota optimizer. Demonstrative optimization case studies were conducted using a UH-60A main rotor as the base case. Rotor power in hover and forward flight, at advance ratio 𝜇𝜇 = 0.3, are used as objective functions. The results of this study show improvement in rotor power of 6.13% and 8.52% in hover and an advance ratio of 0.3, respectively. This configuration also yields greater reductions in rotor power for high advance ratios, e.g., 12.42% reduction at 𝜇𝜇 = 0.4.
  • Demonstration of an Autonomous Sailing Vessel for Monitoring Nearshore and Offshore Marine Environments

    Abstract: This technical note describes the US Army Engineer Research and Development Center (ERDC) application of an autonomous sailing vessel (ASV) to monitor water quality near underwater unexploded ordnance in Vieques, Puerto Rico, and the Center for Acoustics Research and Education, University of New Hampshire, application of the ASV to monitor the ocean soundscape along the Atlantic Outer Continental Shelf.
  • Invasive Species Costs to the USACE Navigation Business Line: A Demonstration Analysis in the Chicago District

    Abstract: Executive Order 13112 requires federal agencies to report invasive species costs to the National Invasive Species Counsel (NISC) annually. NISC then reports to Congress to increase awareness of invasive species and encourage inter-agency cooperation. Since 2005, the US Army Corps of Engineers (USACE) has provided an annual estimate for the Civil Works (CW) business lines. Traditionally, USACE estimates have been informed by broad assumptions, as many invasive species costs are not itemized. This study sought to develop a method to improve these estimates. A demonstration analysis was conducted for the Chicago District Navigation Business Line and was used to inform recommendations for a nation-wide analysis. The demonstration revealed invasive species-related costs represent about 0.2% ($64,000) of the district’s Navigation Business Line. Invasive species costs are subject to many variables, such as the type, prevalence, and impact of invasive species, as well as the number and type of navigation projects. The Chicago District results are not presumed to be indicative of other districts’ invasive species costs. Rather, the demonstration informed the development of an invasive species cost estimating method that can adapted for each CW business line, as well as variations in invasive species and projects across geographic regions. This report describes the demonstration analysis and presents a defensible framework for quantifying the costs of invasive species to the USACE CW program.
  • Coastal Hazards System–Puerto Rico and US Virgin Islands (CHS-PR)

    Abstract: The South Atlantic Coastal Study (SACS) was completed by the US Army Corps of Engineers to quantify storm surge and wave hazards allowing for the expansion of the Coastal Hazards System (CHS) to the South Atlantic Division (SAD) domain. The goal of the CHS-SACS was to quantify coastal storm hazards for present conditions and future sea level rise (SLR) scenarios to aid in reducing flooding risk and increasing resiliency in coastal environments. CHS-SACS was completed for three regions within the SAD domain, and this report focuses on the Coastal Hazards System–Puerto Rico and US Virgin Islands (CHS-PR). This study applied the CHS Probabilistic Coastal Hazard Analysis (PCHA) framework for quantifying tropical cyclone (TC) responses, leveraging new atmospheric and hydrodynamic numerical model simulations of synthetic TCs developed explicitly for the CHS-PR region. This report focuses on documenting the PCHA conducted for CHS-PR, including the characterization of storm climate, storm sampling, storm recurrence rate estimation, marginal distributions, correlation and dependence structure of TC atmospheric-forcing parameters, development of augmented storm suites, and assignment of discrete storm weights to the synthetic TCs. As part of CHS-PR, coastal hazards were estimated for annual exceedance frequencies over the range of 10 yr⁻¹ to 10⁻⁴ yr⁻¹.
  • Publications of the U.S. Army Engineer Research and Development Center; Appendix G: FY22 (October 2021-September 2022)

    Abstract: Publications issued October 2021 through September 2022 by the US Army Engineer Research and Development Center (ERDC) are listed. The publications are grouped according to the technical laboratories or technical program for which they were prepared. Procedures for obtaining ERDC reports are included in the Preface.
  • In Situ and Time

    Abstract: Large-scale HPC simulations with their inherent I/O bottleneck have made in situ visualization an essential approach for data analysis, although the idea of in situ visualization dates back to the era of coprocessing in the 1990s. In situ coupling of analysis and visualization to a live simulation circumvents writing raw data to disk for post-mortem analysis -- an approach that is already inefficient for today's very large simulation codes. Instead, with in situ visualization, data abstracts are generated that provide a much higher level of expressiveness per byte. Therefore, more details can be computed and stored for later analysis, providing more insight than traditional methods. This workshop encouraged talks on methods and workflows that have been used for large-scale parallel visualization, with a particular focus on the in situ case.
  • Evaluation of Cedar Tree Revetments for Bank Stabilization at the Locust Creek Conservation Area, Missouri: Quantifying Bank Erosion Volumes from Preproject to Postfailure

    Abstract: The US Army Corps of Engineers Regional Sediment Management (RSM) program funded research to assess the longevity and effectiveness of cedar tree revetments for sediment reduction. Between 1988 and 1997, the Missouri Department of Conservation (MDC) constructed multiple cedar tree revetments, plantings, and a grade-control structure at an experimental stream management area on Locust Creek within the Locust Creek Conservation Area (LCCA). For the first few years, MDC also replaced missing trees as needed. MDC monitored these sites with photographs and cross sections until 2004. This study evaluated bank stability on Locust Creek from 1970 to 2019 using aerial imagery, lidar, ground surveys, and a December 2019 site visit to estimate the areal change in streambanks and the volume of sediment eroded over the years. Based on their dates of construction, the project compared preproject, with-project, and postfailure conditions at each site. The project included cedar tree revetments, other hardwood revetments, plantings, and a grade-control structure. This research found a 50% to 64% reduction in erosion for approximately 14 years. As of December 2019, all tree revetments had failed, and banks were bare and steep. The grade-control structure remained intact and continued to stabilize bed and banks immediately upstream.
  • A Review of Tidal Embayment Shoaling Mechanisms in the Context of Future Wetland Placement

    Abstract: Wetland construction in tidally influenced embayments is a strategy for beneficial use of sediment dredged from nearby navigation channels. These projects have the potential to alter basin morphology, tidal hydrodynamics, and shoaling trends. This special report provides a broad review of the literature related to engineering-induced changes in tidal range, salinity, tidal prism, tidal asymmetry, and other known causes of shoaling. Each potential shoaling mechanism is then evaluated in the context of wetland placement to provide a foundation for future beneficial use research. Based on a compilation of worldwide examples, wetland placement may reduce tidal amplitude and enhance ebb current dominance, thus reducing shoaling rates in the channels. However, constructed wetlands could also reduce the embayment’s tidal prism and cause accelerated shoaling relative to the pre-engineered rate. Because constructed wetlands are often created in conjunction with navigation channel dredging, the system’s morphologic response to wetland construction is likely to be superimposed upon its response to channel deepening, and the net effect may vary depending on a variety of system- specific parameters. Planning for future wetland placements should include an evaluation of local hydrodynamic behavior considering these factors to predict site-specific response.
  • Ship-Induced Waves at Tybee Island, Georgia

    Abstract: Commercial vessels transiting the Savannah entrance channel intermittently generate large wake events at Tybee Island, Georgia, creating a potential hazard for beachgoers. However, not all commercial vessels generate large wakes, and the relationship between vessel dimensions, operating conditions, wake height, and drawdown magnitude is unclear. This study evaluates bathymetric data, high-frequency wave and vessel wake measurements, and broadcast vessel identification over a 4-month period with the goal of providing a quantitative characterization of vessel wake conditions at Tybee Island. Data from 1,386 cargo vessel passages and 202 tanker passages indicate that vessel dimensions (length and beam) are positively correlated with drawdown magnitude and secondary wake height, although large vessels do not consistently generate large wakes. Container ships, which tended to travel faster than tankers, corresponded to the largest wakes in the dataset. A further hypothesis is that tidally modulated energy dissipation may favor smaller vessel wake uprush at low tide and larger uprush at high tide, but this idea cannot be confirmed without additional measurements to quantify nonlinear wave propagation on the beach face. Based on the collected data, the study concludes with four recommendations for reducing risk to beachgoers.