Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: April, 2025
Clear
  • Ohio Creek Urban Coastal Storm Risk Management Project: An Application of Engineering With Nature® Principles in Practice

    Purpose: The Engineering With Nature® (EWN®) program within the US Army Corps of Engineers (USACE) funds research projects occurring in a myriad of environments, including in marine coasts, freshwater coasts, and fluvial (riverine) systems. Yet there have been fewer projects documented where EWN principles have been applied in urban landscapes, particularly to manage flood risk, a main civil works mission of the USACE. Natural hazards including increased flashiness associated with intense rainfall events have prompted the need for more sustainable infrastructure solutions that reduce flood risks in urban areas, especially when such solutions desired by stakeholders are nature-based solutions. This technical note documents a flood risk management project in Norfolk, Virginia, that incorporates EWN principles in a tidal estuary environment that not only reduces flood risk, but also provides numerous other environmental, social, and economic benefits.
  • Advancing a Framework for Rapid Assessment and Economic Valuation of Wild Pig Damage to Wetland Terrain: Year Two of Research at US Army Corps of Engineers Somerville Lake, Texas

    Abstract: Wild pigs significantly impact wetlands, yet a standardized method for quantifying and valuing this damage is lacking. This research aims to develop a user-friendly ecological-economic framework for rapid assessment of wild pig damage on wetlands, building on a pilot study conducted at Lake Somerville, Texas, in FY21. The FY22 project advanced methods to value the lost benefits provided by wetlands due to wild pigs and identified methods to adapt and refine the framework for broader application. Additionally, a 65% reduction in wild pig population was achieved by Texas Wildlife Services personnel through helicopter gunning at two treatment sites, which is estimated to have prevented further damage to wetlands.
  • LaGrange Lock and Dam, Illinois River: Navigation Approach Physical Model

    Abstract: A physical model study of the LaGrange Lock and Dam was conducted to optimize the navigation conditions for the new landside lock chamber design developed by the US Army Corps of Engineers–Rock Island District, Inland Navigation Design Center, and Stanley Consultants. A 1:120 Froude scale model was built to evaluate the navigation conditions for tows entering and exiting the upper and lower approaches. The final design consisted of a new 1,200 ft lock chamber located landward of the existing chamber. Data were collected to evaluate tow tracks and current direction and velocity information. Satisfactory navigation conditions were developed, and details are shown in the results section of this report.
  • VTIME Using ERDC as a Testbed with PLANNER

    Abstract: This technical note documents the outcome of a September 2023 workshop titled “VTIME using ERDC as a Testbed with PLANNER.” PLANNER exists as a prototype installation master planning tool, operating as an application using the Virtual Toolbox for Installation Mission Effectiveness (VTIME) as a platform. The objectives of the US Army Engineer Research and Development Center (ERDC) FLEX-4 project for VTIME using “ERDC as a Testbed” with PLANNER included modeling and analyzing ERDC facilities using the PLANNER prototype and assessing the feasibility of ERDC as a pilot site for inclusion PLANNER implementation. The workshop aimed to demonstrate PLANNER for ERDC personnel and showcase a new installation planning capability that intends to transform the way the Army performs installation master planning by digitalizing and operationalizing master planning.
  • Bacterial Remediation of Microsystin-HAB Toxins Utilizing Microcystinase (MlrA)

    Abstract: Microcystins are a class of hepatotoxins produced by some harmful algal bloom–associated cyanobacteria and are the most reported tox-ins in freshwaters. Their cyclic structure makes them resistant to conventional methods used in water treatment operations (boiling, chlorination, and UV treatment). Some bacteria can naturally degrade microcystins via the mlrABCD cluster, a pathway initiated by the primary enzyme microcystinase (MlrA). MlrA linearizes the cyclic microcystin, greatly reducing its toxicity. Protein fusion was employed to produce a recombinant MlrA enzyme fused to maltose-binding protein ([MBP] MBP-MlrA) and to evaluate long-term enzymatic stabilization and reconstitution for future applications. MBP-MlrA degraded cyclic microcystin in vitro and demonstrated stability across a range of biological pHs. At a concentration of 0.61 ng/µl in buffer, MBP-MlrA achieved and maintained an average degradation rate of approximately 101.95 µM/h/ng of protein across fifteen freeze/thaw cycles. Stability assays demonstrated that enzyme activity was preserved over 5 months at −20°C. Results also demonstrated the effectiveness of MBP-MlrA to linearize microcystin upwards of 55.59 µM/h/ng of protein at the bench scale in both buffer and various freshwater matrices. The presence of the linear metabolite is of concern regarding intermediate toxicity, and future studies to incorporate the MlrB peptidase are discussed.