Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: August, 2024
Clear
  • Tools and Technical Guidelines for Delineating the Extent of Tidal Waters: Proof of Concept

    Abstract: The delineation of shorelines in tidally influenced waters, as well as the inland extent of tidal influence of those waters, is often used to define the extent of federal and/or state jurisdictional boundaries, including the US Army Corps of Engineers’ (USACE) limits of jurisdiction under the Rivers and Harbors Act of 1899 (RHA) and Section 404 of the Clean Water Act. At present, USACE and other practitioners use a variety of field observations and desktop-based data sets, tools, and techniques to identify and delineate the lateral and longitudinal extent of USACE’s jurisdiction under the RHA for tidally influenced waters. Tidal waters, and thus federal jurisdiction under the RHA, “end where the rise and fall of the water surface can no longer be practically measured in a predictable rhythm.” However, the technical standards, definitions, and data to delineate tidal extent are also lacking. The uncertainty and ambiguity in what constitute tidal extent increases litigation risk and decreases repeatability and technical defensibility of USACE decisions. Nationally applicable technical guidance and rapid tools and techniques are needed to increase defensibility and consistency across all coastal USACE districts while also accelerating USACE Regulatory decision-making.
  • Analysis of Beach Cusp Formation and Evolution Using High-Frequency 3D Lidar Scans

    Abstract: Beach cusp characteristics were explored using 15 months of 3D lidar scans collected hourly at the Duck, NC, Field Research Facility. Fourier analyses performed on lidar-derived beach elevation contours generated spatial cusp spectra. Active cusp events identified from the location and magnitude of each spectrum’s peak were used to evaluate conditions during cusp formation and evolution. Cusps primarily developed during normally-incident, long-period, low-energy wave conditions with low frequency spread and reflective beach conditions. Often, however, persistent upper-beach cusps lasted days to months and dynamic lower-beach cusps evolved over individual tidal cycles. At times, beaches exhibiting multiple cusp systems reverted to a single cusp system extending the entire beach when the high-tide waterline reached the upper-beach cusps, with the location and spacing of the resulting lower-beach cusps controlled by the upper-beach cusps. This is consistent with a “morphological coupling” hypothesis that hydrodynamic-morphodynamic feedbacks between the swash and upper-beach cusps can form lower-beach cusps with a related wavelength as the tide falls. However, sometimes the high-tide waterline reaching the upper-beach cusps did not result in a unified beach state. This suggest that morphological coupling is often an important factor in controlling the development of new lower-beach cusps but cannot initiate cusp formation in hydrodynamic conditions outside those favorable for cusp activity.
  • Detection and Decay of Different Classes of Environmental RNA (eRNA) from Zebrafish (Danio rerio)

    Purpose: This technical note contributes to the growing body of knowledge about macroscopic eukaryotic environmental RNA (eRNA) by exploring detection and decay for several different zebrafish (Danio rerio) eRNAs in a mesocosm setting. The study addressed four basic hypotheses: (1) D. rerio would deposit detectable levels of eRNA into water, (2) different classes of eRNA would be detected, (3) different eRNA sequences (for example, loci) would degrade at different rates, and (4) abiotic and biotic factors would influence rates of degradation. For the last hypothesis, we tracked eRNA concentration decay under treatments with different water temperatures and levels of microbiological activity, two factors known to significantly influence environmental DNA (eDNA) decay (Barnes et al. 2014; Lance et al. 2017; Nielsen et al. 2007; Strickler et al. 2015).