Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: July, 2020
Clear
  • PUBLICATION NOTICE: Rapid Tidal Reconstruction for the Coastal Hazards System and StormSim Part I: Coastal Texas and Louisiana

    Abstract: incorporating a rapid tidal time series reconstruction and prediction subroutine within the Coastal Hazards System (CHS) framework. The CHS (https://chs.erdc.dren.mil) is a national database and web tool that provides probabilistic coastal hazard analysis (PCHA) products developed from regional studies such as the North Atlantic Coast Comprehensive Study (Nadal-Caraballo et al. 2015; Cialone et al. 2015). PCHA considers hazards due to both tropical and extratropical cyclones, depending on the storm climatology of the region of interest. The CHS supports feasibility studies, probabilistic design of coastal structures, flood risk management for coastal communities, and critical infrastructure. In the case of tropical cyclones (TCs) or hurricanes, both the timing of landfall and the level of the astronomical tide at the landfall location are critical in determining the magnitude of the still water level (i.e., storm surge + wave setup + astronomical tide). Therefore, a robust and accurate tide prediction methodology is needed to provide reliable reconstruction of tidal time series for historical, synthetic, and forecasted hurricane scenarios. This CHETN also discusses the quantification and validation of the Advanced Circulation (ADCIRC) tidal constituent database in the coastal Texas and Louisiana region as well as the implementation of the tidal reconstruction program Unified Tidal analysis (UTide) in the CHS framework.
  • PUBLICATION NOTICE: Laboratory spiking process of soil with various uranium and other heavy metals

    Abstract: Laboratory studies using metal spiked soils are challenging due to soil heterogeneity. This work provides an easy, quick, precise, and accurate technique for the preparation of spiked soils for laboratory research. The process described spiking soil with various uranium species and other heavy metals for laboratory scale pilot experiments under various biogeochemical conditions. The procedure involves grinding both dry soil and metal chemicals into the fine powder. The spiked soil mixture was further homogenized through a modified splitting and combining of the sample by diagonal flipping using plastic sheeting. Comparison of measured concentrations with theoretical values were obtained with <20% precision and accuracy. However, tradition spiking method with metal solution of-ten yielded high heterogeneous spiked soils due to strong metal adsorption in soils. Re-drying and re-grinding of soils were required following the spiking in order to homogenize treated soils, generating inhalable particulates. Thus appropriate personal protective equipment and practices are required for the safety concern. The present method with metal salt powder proved a safe, useful, quick, accurate and precise, and homogenized soil spiking method.
  • PUBLICATION NOTICE: Spatial Analysis of Precipitation and Snow Water Equivalent Extremes for the Columbia River Basin

    Abstract: Recent advances in the spatial statistics of extremes and model calibration were applied to develop and deliver areal-exceedance estimates for precipitation (PREC), by season and duration, and snow water equivalent (SWE), by cool season month and for the water year, for 758 delineated sub-basins of the Columbia River Basin (CRB), which correspond to a new CRB hydrology model watershed delineation. Understanding that future US Army Corps of Engineers, Northwestern Division, mission requirements may change, project execution also included the development and delivery of an application guidance document to credibly compute areal-exceedance estimates, including uncertainty, for PREC or SWE for any arbitrary area within the CRB. R, a free software environment for statistical computing and graphics (https://www.r-project.org/), and QGIS, a free and open source geographic information system (https://qgis.org/en/site/index.html), were the primary tools used for product development and delivery. The following R software packages were primarily used during project execution: evd, Glmnet, maps, raster, rgdal, SDMTools, sp, and SpatialExtremes.
  • PUBLICATION NOTICE: Laboratory Simulation of Uranium Metal Corrosion in Different Soil Moisture Regimes

    Abstract: A novel laboratory simulation system has been developed for the study of the corrosion of uranium metal in soils. Corrosion and transportation of depleted uranium (DU) as the metal undergoes weathering as a buried material within the soil environment. The corrosion of uranium metal in soil was not well understood due to the gas-liquid-solid phase of the soil. This study presents a novel method to investigate the change of uranium species during the process of process of oxidation of metallic uranium in these environments. Compared with other techniques used for the study of environmental corrosion of metals in soils, this method has the ad-vantage of low secondary uranium pollution, no energy consumption, and ease of operation. The simulation system has been used for the following studies: • Simultaneously simulate the corrosion of uranium metal in different soil moisture regimes • Study the influence of biogeochemical factors on the corrosion of uranium metal • Investigate the change of uranium species during oxidation.
  • PUBLICATION NOTICE: Electrokinetic-Enhanced Phytoremediation of Uranium-contaminated Soil Using Sunflower and Indian Mustard

    Abstract: Electrokinetic-enhanced phytoremediation is an effective technology to decontaminate heavy metal contaminated soil. In this study, we examined the effects of electrokinetic treatments on plant uptake and bioaccumulation of U from soils with various U sources. Redistribution of uranium in soils as affected by planting and electrokinetic treatments was investigated. The soil was spiked with 100mg kg⁻¹ UO₂, UO3, and UO₂(NO₃)₂. After sunflower and Indian mustard grew for 60 days, 1 voltage of direct-current was applied across the soils for 9 days. The results indicated that U uptake in both plants were significantly enhanced by electrokinetic treatments from soil with UO₃ and UO₂(NO₃)₂. U was more accumulated in roots than in shoots. Electrokinetic treatments were effective on lowering soil pH near the anode region. Overall, uranium (U) removal efficiency reached 3.4–4.3% from soils with UO₃ and uranyl with both plants while that from soil with UO₂ was 0.7–0.8%. Electrokinetic remediation treatment significantly enhanced the U removal efficiency (5–6%) from soils with UO₃ and uranyl but it was 0.8–1.3% from soil with UO₂, indicating significant effects of U species and electrokinetic enhancement on U bioaccumulation. This study implies the potential feasibility of electrokinetic-enhanced phytoremediation of U soils with sunflower and Indian mustard.
  • PUBLICATION NOTICE: A Novel Laboratory Simulation System to Uncover the Mechanisms of Uranium Upward Transport in a Desert Landscape

    Abstract: After depleted uranium (DU) is deposited in the environment, it corrodes producing mobile uranium species. The upward transport mechanism in a desert landscape is associated with the dissolution/precipitation of uranium minerals that vary in composition and solubility in soil pore water. The objective of this study is to develop the laboratory column simulation to investigate the upward transport mechanism with cyclic capillary wet-ting and drying moisture regimes. Results showed that evaporation driven upward transport occurred even during the first 2 months of wetting-drying regimes. Evaporation driven upward transport may control the U movement in the soil profile in an arid climate. The new system did not generate any uranium-containing wastewater. • Simulates the upward transport process of pollutants with different pollution levels and species. • Simultaneously simulate the transport process of multiple pollutants simultaneously. • Evaluate the influence of biogeochemical factors on pollutant transport such as various cations and anions (Ca, Mg and carbonates) in water.