Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Wetland Restoration
Clear
  • Toward Systemic Beneficial use of Dredged Sediments in San Pablo Bay: Demonstration of a Proposed Framework for Matching Sediment Needs with Dredging Requirements

    Abstract: Coastal wetlands provide a suite of valuable ecosystem services, but they are rapidly disappearing due to reductions in sediment supply and rising sea levels, making them ideal candidates for restoration through beneficial use of dredged sediment. Because sediment dredged from navigation channels is a limited resource relative to the number of degraded wetlands, a framework has been developed to align coastal restoration sediment needs with dredging requirements to maximize social, environmental, and flood risk reduction benefits while also completing the navigation mission. The framework is comprised of four key steps: (1) geographic scoping and suitability considerations, (2) quantification of the dredged sediment available and restoration project sediment needs, (3) definition of cost and benefit objectives, and (4) optimization of costs and benefits to determine the most efficient solutions. This report is a demonstration of this framework on a subset of wetland sites and local federal navigation channels in San Pablo Bay, California.
  • Regeneration Dynamics of Bottomland Hardwood Sites Following Prolonged Growing-Season Inundation

    Abstract: The spring flood of the Mississippi River and backwater areas in 2019 resulted in large-scale flooding and was the longest-lasting flood event since the Great Flood of 1927. This flood event provided a rare opportunity to establish permanent plots in batture and backwater habitats to evaluate forest-stand dynamics following prolonged flooding. In this study, we evaluated postflooding conditions of forest overstory, midstory, and regeneration by establishing permanent plots at four locations subjected to varying amounts of flooding within the Mississippi River batture and the Yazoo–Mississippi Delta backwater region. Our results highlight oak regeneration success following the 2019 flood event as well as the utility and need to establish and monitor permanent plots to increase our understanding of floodplain forest dynamics in regions experiencing prolonged riverine flooding during the growing season.
  • Selection of a Time Series of Beneficial Use Wetland Creation Sites in the Sabine National Wildlife Refuge for Use in Restoration Trajectory Development

    PURPOSE: The development of regional restoration trajectories of marsh creation and nourishment projects is key to improved design, management, and implementation of adaptive management principles. Synthesizing information from multiple marsh creation projects constructed at various times but with consistent site characteristics and borrow material sources, helps elucidate restoration success in a specific region. Specifically, this technical note (TN) documents the process of determining a suitable study area, construction methods, and the current state of establishing sites in the Louisiana Gulf Coast that could be used for restoration trajectory development. This investigation compiled information from the construction phases, Landset 8 satellite imagery, and the most recent digital elevation model (DEM) to investigate elevation and vegetation establishment within these sites.
  • Technical Guide for the Development, Evaluation, and Modification of Wetland Rapid Assessment Methods for the Corps Regulatory Program

    Abstract: The US Army Corps of Engineers (Corps) Regulatory Program considers the loss (decrease) and gain (improvement) of wetland functions as part of Clean Water Act Section 404 permitting and compensatory mitigation decisions. To better inform this regulatory decision-making, the Regulatory program needs accurate, transparent, objective, and defensible approaches to assess the function and condition of wetlands. Additionally, wetland assessments must balance the need for objective decision-making with the concurrent need to make Regulatory program decisions in a timely manner. Consequently, it is often necessary to assess wetlands using rapidly attainable proxy measures of ecological function or condition by evaluating a suite of metrics that represent structural and compositional attributes of a wetland. In response, this document describes a set of guidelines to effectively develop, evaluate, and modify wetland assessment methods, specifically for the Corps Regulatory Program.
  • A Review of Tidal Embayment Shoaling Mechanisms in the Context of Future Wetland Placement

    Abstract: Wetland construction in tidally influenced embayments is a strategy for beneficial use of sediment dredged from nearby navigation channels. These projects have the potential to alter basin morphology, tidal hydrodynamics, and shoaling trends. This special report provides a broad review of the literature related to engineering-induced changes in tidal range, salinity, tidal prism, tidal asymmetry, and other known causes of shoaling. Each potential shoaling mechanism is then evaluated in the context of wetland placement to provide a foundation for future beneficial use research. Based on a compilation of worldwide examples, wetland placement may reduce tidal amplitude and enhance ebb current dominance, thus reducing shoaling rates in the channels. However, constructed wetlands could also reduce the embayment’s tidal prism and cause accelerated shoaling relative to the pre-engineered rate. Because constructed wetlands are often created in conjunction with navigation channel dredging, the system’s morphologic response to wetland construction is likely to be superimposed upon its response to channel deepening, and the net effect may vary depending on a variety of system- specific parameters. Planning for future wetland placements should include an evaluation of local hydrodynamic behavior considering these factors to predict site-specific response.
  • Financing Natural Infrastructure: South Bay Salt Pond Restoration Project, California

    PURPOSE: This technical note is part of a series collaboratively produced by the US Army Corps of Engineers (USACE)–Institute for Water Resources (IWR) and the US Army Engineer Research and Development Center (ERDC). It describes the funding and financing process for the South Bay Salt Pond Restoration Project in San Francisco Bay, California and, like the other technical notes in this series, documents successful examples of funding natural infrastructure projects. The research effort is a collaboration between the Engineering With Nature® (EWN®) and Systems Approach to Geomorphic Engineering (SAGE) programs of USACE. A key need for greater application of natural infrastructure approaches is information about obtaining funds to scope, design, construct, monitor, and adaptively manage these projects. As natural infrastructure techniques vary widely by location, purpose, and scale, there is no standard process for securing funds. The goal of this series is to share lessons learned about a variety of funding and financing methods to increase the implementation of natural infrastructure projects.
  • Inundation Depth and Duration Impacts on Wetland Soils and Vegetation: State of Knowledge

    Abstract: The following synthesizes studies investigating plant and soil responses to increased inundation in order to support ecosystem restoration efforts related to the alteration of natural wetland hydrodynamics. Specific topics include hydrologic regimes, soil response to inundation, and implications for vegetation communities exposed to increased water depths. Results highlight the important interactions between water, soils, and vegetation that determine the trajectory and fate of wetland ecosystems, including the development of feedback loops related to marsh degradation and subsidence. This report then discusses the knowledge gaps related to implications of inundation depth, timing, and duration within an ecosystem restoration context, identifying opportunities for future research while providing source materials for practitioners developing restoration projects.
  • An Evaluation of Soil Phosphorus Storage Capacity (SPSC) at Proposed Wetland Restoration Locations in the Western Lake Erie Basin

    Abstract: Historical loss of wetlands coupled with excess phosphorus (P) loading at watershed scales have degraded water quality in portions of the western Lake Erie Basin (WLEB). In response, efforts are underway to restore wetlands and decrease P loading to surface waters. Because wetlands have a finite capacity to retain P, researchers have developed techniques to determine whether wetlands function as P sources or sinks. The following technical report evaluates the soil P storage capacity (SPSC) at locations under consideration for wetland restoration in collaboration with the Great Lakes Restoration Initiative (GLRI) and the H2Ohio initiative. Results indicate that the examined soils display a range of P retention capacities, reflecting historic land-use patterns and management regimes. However, the majority of study locations exhibited some capacity to sequester additional P. The analysis supports development of rankings and comparative analyses of areas within a specific land parcel, informing management through design, avoidance, removal, or remediation of potential legacy P sources. Additionally, the approaches described herein support relative comparisons between multiple potential wetland development properties. These results, in conjunction with other data sources, can be used to target, prioritize, justify, and improve decision-making for wetland management activities in the WLEB.
  • Quantifying Functional Increases Across a Large-Scale Wetland Restoration Chronosequence

    Abstract: Over 300,000 ha of forested wetlands have undergone restoration within the Mississippi Alluvial Valley region. Restored forest successional stage varies, providing opportunities to document wetland functional increases across a large-scale restoration chronosequence using the Hydrogeomorphic (HGM) approach. Results from >600 restored study sites spanning a 25-year chronosequence indicate that: 1) wetland functional assessment variables increased toward reference conditions; 2) restored wetlands generally follow expected recovery trajectories; and 3) wetland functions display significant improvements across the restoration chronosequence. A functional lag between restored areas and mature reference wetlands persists in most instances. However, a subset of restored sites have attained mature reference wetland conditions in areas approaching or exceeding tree diameter and canopy closure thresholds. Study results highlight the importance of site selection and the benefits of evaluating a suite of wetland functions in order to identify appropriate restoration success milestones and design monitoring programs. For example, wetland functions associated with detention of precipitation (a largely physical process) rapidly increased under post restoration conditions, while improvements in wetland habitat functions (associated with forest establishment and maturation) required additional time. As the wetland science community transitions towards larger scale restoration efforts, effectively quantifying restoration functional improvements will become increasingly important.
  • Evaluating Soil Phosphorus Storage Capacity in Constructed Wetlands: Sampling and Analysis Protocol for Site Selection

    Abstract: Soil characteristics determine the capacity of wetlands to sequester phosphorus (P). However, researchers have not yet developed a standard protocol for conducting soil sampling to document the soil phosphorus storage capacity (SPSC) for constructed wetland site selection. In response, the following technical note provides step-by-step instructions for selecting soil sample locations, describing site conditions, conducting soil sampling, and preparing samples for laboratory analysis. This note also includes calculations and interpretation of SPSC.