Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: geospatial data
Clear
  • Optimization Strategies for Geospatial Data on End-User Devices

    Abstract: The ability to quickly disseminate geospatial data across all echelons, particularly those at the tactical edge, is critical to meeting threats described by the Multi-Domain Operations doctrine. The US Army Engineer Research and Development Center, Geospatial Research Laboratory (ERDC-GRL), is researching the optimization of the formats, data models, file sizes, and quality of geospatial products to be exploited by end-user devices (EUDs). This report describes a processing methodology comprising custom software and open-source tools to optimize Army Geospatial Enterprise Standard Sharable Geospatial Foundation and industry-accepted products for exploitation on EUDs. The Integrated Visual Augmentation System (IVAS) was emphasized, but other devices, including the Nett Warrior and Program Executive Office—Soldier targeting systems, were also studied. Additionally, we developed a compression methodology that reduced the size of three-dimensional model data by a factor of 9 without a loss in data quality. A summary of the results describes steps to address remaining technical issues and considers future efforts to further optimize geospatial data for additional EUDs and tactical applications.
  • Establishing a Selection of Dust Event Case Studies for Regions in the Global South

    Abstract: Airborne dust is an essential component of climatological and biogeochemical processes. Blowing dust can adversely affect agriculture, transportation, air quality, sensor performance, and human health. Therefore, the accurate characterization and forecasting of dust events is a priority for air quality researchers and operational weather centers. While dust detection and prediction capabilities have evolved over the preceding decades, the weather modeling community must continue to improve the location and timing of individual dust event fore-casts, especially for extreme dust outbreaks. Accordingly, Researchers at the US Army Engineer Research and Development Center (ERDC) are establishing a series of reference case study events to enhance dust transport model development and evaluation. These case studies support ongoing research to increase the accuracy of simulated dust emissions, dust aerosol transport, and dust-induced hazardous air quality conditions. This report documents five new contributions to the reference inventory, including detailed assessments of dust storms from three regions with differing meteorological forcing regimes. Here, we examine two extreme dust episodes that affected India, a multiday berg wind event in southern Africa, a strong but short-lived dust plume from the Atacama Desert of Chile, and a narrow, isolated dust plume emanating from a dry lake bed in Patagonia.
  • Analysis of Vegetation as Terrain: The “How” and “Why” of US Army Doctrine

    Abstract: There is a significant knowledge gap for Army doctrine concerning civilian research scientists. A relatively small number of soldiers make the transition from warfighter to research and development at the basic and applied levels. That number is even less when considering former warfighters that have applied Army doctrine in an operational or advanced Army schooling environment. This special report is intended to focus solely on the Army’s current capabilities and doctrinally defined processes to analyze vegetation as an essential component of the natural terrain. The objective of this report is to review current Army doctrine related to analysis of the vegetated terrain; to explore currently leveraged tactics, techniques, and procedures (TTPs); and identify valuable geospatial resources as they apply to military planning. For ease to readers unfamiliar with US Army doctrine, much of the referenced material is directly presented herein as tables and figures throughout the document and appendices (e.g., data sources, product examples, and glossary).
  • Establishing a Series of Dust Event Case Studies for East Asia

    Abstract: Dust aerosols have a wide range of effects on air quality, health, land-management decisions, aircraft operations, and sensor data interpretations. Therefore, the accurate simulation of dust plume initiation and transport is a priority for operational weather centers. Recent advancements have improved the performance of dust prediction models, but substantial capability gaps remain when forecasting the specific location and timing of individual dust events, especially extreme dust outbreaks. Operational weather forecasters and US Army Engineer Research and Development Center (ERDC) researchers established a series of reference case study events to enhance dust transport model evaluation. These reference case studies support research to improve modeled dust simulations, including efforts to increase simulation accuracy on when and where dust is lofted off the ground, dust aerosols transport, and dust-induced adverse air quality issues create hazardous conditions downstream. Here, we provide detailed assessments of four dust events for Central and East Asia. We describe the dust-event lifecycle from onset to end (or when dust transports beyond the area of interest) and the synoptic and mesoscale environ-mental conditions governing the process. Analyses of hourly reanalysis data, spaceborne lidar and aerosol optical depth retrievals, upper-air soundings, true-color satellite imagery, and dust-enhanced false-color imagery supplement the discussions.
  • Low Size, Weight, Power, and Cost (SWaP-C) Payload for Autonomous Navigation and Mapping on an Unmanned Ground Vehicle

    Abstract: Autonomous navigation and unknown environment exploration with an unmanned ground vehicle (UGV) is extremely challenging. This report investigates a mapping and exploration solution utilizing low size, weight, power, and cost payloads. The platform presented here leverages simultaneous localization and mapping to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, 3D lidar, and red-green-blue and depth cameras. The main goal of this effort is to leverage path planning and navigation for mapping and exploration with a UGV to produce an accurate 3D map. The solution provided also leverages the Robot Operating System
  • During Nearshore Event Vegetation Gradation (DUNEVEG): Geospatial Tools for Automating Remote Vegetation Extraction

    Abstract: Monitoring and modeling of coastal vegetation and ecosystems are major challenges, especially when considering environmental response to hazards, disturbances, and management activities. Remote sensing applications can provide alternatives and complementary approaches to the often costly and laborious field-based collection methods traditionally used for coastal ecosystem monitoring. New and improved sensors and data analysis techniques have become available, making remote sensing applications attractive for evaluation and potential use in monitoring coastal vegetation properties and ecosystem conditions and changes. This study involves the extraction of vegetation metrics from airborne lidar and hyperspectral imagery (HSI) collected by the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP) to quantify coastal dune vegetation characteristics. A custom geoprocessing toolbox and associated suite of tools were developed to allow inputs of common NCMP lidar and imagery products to help automate the workflow for extracting prioritized dune vegetation metrics in an efficient and repeatable way. This study advances existing coastal ecosystem knowledge and remote sensing techniques by developing new methodologies to classify, quantify, and estimate critical coastal vegetation metrics which will ultimately improve future estimates and predictions of nearshore dynamics and impacts from disturbance events.
  • 3D Mapping and Navigation Using MOVEit

    Abstract: Until recently, our focus has been primarily on the development of a low SWAP-C payload for deployment on a UGV that leverages 2D mapping and navigation. Due to these efforts, we are able to autonomously map and navigate very well within flat indoor environments. This report will explore the implementation of 3D mapping and navigation to allow unmanned vehicles to operate on a variety of terrains, both indoor and outdoor. The method we followed uses MOVEit, a motion planning framework. The MOVEit application is typically used in the control of robotic arms or manipulators, but its handling of 3D perception using OctoMaps makes it a promising software for robots in general. The challenges of using MOVEit outside of its intended use case of manipulators are discussed in this report.
  • Geomorphic Feature Extraction to Support the Great Lakes Restoration Initiative’s Sediment Budget and Geomorphic Vulnerability Index for Lake Michigan

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) details a Geographic Information Systems (GIS) methodology to produce advanced lidar-derived datasets for use in a coastal erosion vulnerability analysis conducted by the US Army Corps of Engineers (USACE) and other federal partners for the Great Lakes Restoration Initiative (GLRI).
  • A 10-Year Monthly Climatology of Wind Direction: Case-Study Assessment

    Abstract: A 10-year monthly climatology of wind direction in compass degrees is developed utilizing datasets from the National Oceanic Atmospheric Administration, Climate Forecast System. Data retrieval methodologies, numerical techniques, and scientific analysis packages to develop the climatology are explored. The report describes the transformation of input data in Gridded Binary format to the Geographic Tagged Image File Format to support geospatial analyses. The specific data sources, software tools, and data-verification techniques are outlined.
  • AIS Data: An Overview of Free Sources

    Abstract: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to describe the sources of Automatic Identification System (AIS) data available to the public, with a focus on federal employees who may need AIS data to carry out their official duties. AIS data, in this context, refer to both real-time and historic vessel position information.