Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

 

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: aquatic plants
Clear
  • Flowering Rush Control in Hydrodynamic Systems: Part 1: Water Exchange Processes

    Abstract: In 2018, field trials evaluated water-exchange processes using rhodamine WT dye to provide guidance on the effective management of flowering rush (Butomus umbellatus L.) at McNary Dam and Reservoir (Wallula Lake, 15,700 ha). Additional evaluations determined the effectiveness of BubbleTubing (hereafter referred to as bubble curtain) at reducing water exchange within potential flowering rush treatment areas. Dye readings were collected from multiple sampling points at specific time intervals until a dye half-life could be determined. Whole-plot dye half-lives at sites without bubble curtain ranged 0.56–6.7 h. In slower water-exchange sites (≥2.6 h dye half-life), the herbicide diquat should have a sufficient contact time to significantly reduce flowering rush aboveground biomass. Other sites demonstrated very rapid water exchange (<1.5 h dye half-life), likely too rapid to effectively control flowering rush using chemical treatments without the use of a barrier or curtain to slow water exchange. At one site, the use of the bubble curtain increased the dye half-life from 3.8 h with no curtain to 7.6 and 7.1 h with a bubble curtain. The bubble curtain’s ability to slow water exchange will provide improved chemical control and increase the potential for other chemical products to be effectively used.
  • Two Years of Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 2 years of monitoring were performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Technical Report ERDC/CHL TR-20-14 describes the first year of post-project monitoring and the methodologies employed. This report describes conclusions derived from 2 years of monitoring. While the navigation improvements are largely preventing the channel from infilling, shoaling within is occurring at rates higher than expected. The placement site appears stable and accreting landward; however, there continues to be erosion along the shoreline and through the gaps in the breakwaters. SAV monitoring indicates that SAV is not present in the project footprint, even though turbidity is comparable to the reference area. Physical disturbance of the bottom sediment during construction may explain SAV absence.
  • Phenology of Competitive Interactions and Implications for Management of the Invasive Wetland Plant Alternanthera philoxeroides

    Purpose: Phenological differences between invading plants and members of recipient communities may increase the success of invaders because of priority effects. Thus, the application of management when the invader has a phenological advantage (for example, early in the year) can benefit other species by increasing resource availability. This technical note summarizes results from a combination of field observations and a mesocosm experiment to explore whether phenological differences between the invasive wetland plant, alligatorweed (Alternanthera philoxeroides [Mart.] Grseb.), and resident species contribute to alligatorweed success. We documented over two years the early-season growth of alligatorweed and other species at 12 sites in Louisiana, USA. We then conducted a subsequent mesocosm competition experiment between alligatorweed and a common wetland emergent species, spotted lady’s thumb (Persicaria maculosa [L.] Small), over a full year to detect differences in timing of growth and competitive interactions under two fertilizer levels.
  • Environmental Factors Affecting Coastal and Estuarine Submerged Aquatic Vegetation (SAV)

    Abstract: Submerged aquatic vegetation (SAV) growing in estuarine and coastal marine systems provides crucial ecosystem functions ranging from sediment stabilization to habitat and food for specific species. SAV systems, however, are sensitive to a number of environmental factors, both anthropogenic and natural. The most common limiting factors are light limitation, water quality, and salinity, as reported widely across the literature. These factors are controlled by a number of complex processes, however, varying greatly between systems and SAV populations. This report seeks to conduct an exhaustive examination of factors influencing estuarine and coastal marine SAV habitats and find the common threads that tie these ecosystems together. Studies relating SAV habitats in the United States to a variety of factors are reviewed here, including geomorphological and bathymetric characteristics, sediment dynamics, sedimentological characteristics, and water quality, as well as hydrologic regime and weather. Tools and methods used to assess each of these important factors are also reviewed. A better understanding of fundamental environmental factors that control SAV growth will provide crucial information for coastal restoration and engineering project planning in areas populated by SAVs.
  • Vegetation Community Changes in Response to Phragmites Management at Times Beach, Buffalo, New York

    Abstract: Management of invasive phragmites (Phragmites australis [Cav.] Trin. Ex Steud.) in the United States has proven challenging over the last several decades. Various methods for control exist, but integrated approaches appear to have the most success. However, documentation of vegetation community–wide responses to these approaches remains limited. This study monitored plant community changes at Times Beach, New York, over a five-year period. In concert with mowing and thatch removal in all areas, the study evaluated two herbicides separately and together, representing three experimental treatment areas (TAs), for control efficacy by measuring plant community structure. Phragmites was targeted for treatments, avoiding native and nonproblematic non-native species when possible, to preserve beneficial habitat during phragmites control efforts. Monitoring results showed significant drops in phragmites relative cover, relative frequency, and importance values due to integrated management, regardless of herbicide treatment, with corresponding increases in these same values for native and other plant species. This suggests that prudent removal of phragmites is compatible with beneficial plant restorative efforts to maintain and improve habitat in infested areas.
  • Efficacy of Florpyrauxifen-benzyl for Eurasian Watermilfoil Control and Nontarget Illinois Pondweed, Elodea, and Coontail Response

    Purpose: This research evaluated low concentrations and short exposure times of the recently registered aquatic herbicide florpyrauxifen-benzyl (4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-pyridine-2-benzyl ester) on the target plant Eurasian watermilfoil (Myriophyllum spicatum L., hereafter referred to as EWM) as well as selectivity towards the nontarget submersed species Illinois pondweed (Potamogeton illinoensis Morong), elodea (Elodea canadensis Michx.), and coontail (Ceratophyllum demersum L.)
  • Efficacy of Florpyrauxifen-benzyl on Dioecious Hydrilla and Hybrid Water Milfoil - Concentration and Exposure Time Requirements

    Abstract: This study conducted small-scale trials under various concentration and exposure time (CET) scenarios to determine florpyrauxifen-benzyl activity on dioecious hydrilla and hybrid watermilfoil and determine impact on water stargrass and elodea. Hydrilla treated with 12, 24, or 36 μg active ingredient (a.i.) L⁻¹ florpyrauxifen-benzyl and exposed for 12, 24, or 48 hr under outdoor mesocosm conditions was reduced in biomass by 30-75% at 8 weeks after treatment (WAT). An additional hydrilla trial at the same herbicide concentrations, but under longer exposures (24, 72, or 168 hr), resulted in 33–85% plant control. Under indoor conditions, hybrid watermilfoil dry weight decreased 98–100% with subsurface applications of florpyrauxifen-benzyl under CET scenarios of 3–12 μg a.i. L⁻¹ at 3–24 hr exposure times in a growth chamber trial. Under shorter exposure periods (0.5–4 hr) in a follow-up trial, low doses (3–9 μg a.i. L⁻¹) achieved 50–100% control of hybrid watermilfoil. In the same trial, the nontarget species water stargrass and elodea proved relatively tolerant to the florpyrauxifen-benzyl at doses up to 6 μg a.i. L⁻¹ (4 hr exposure) and 9 μg a.i. L⁻¹ (1 hr exposure). These small-scale trials demonstrate florpyrauxifen-benzyl’s potential to selectively manage invasive species.
  • Comparison of Generic and Proprietary Aquatic Herbicides for Control of Invasive Vegetation; Part 3: Submersed Plants

    Abstract: Herbicide selection is key to efficiently managing nuisance vegetation in our nation’s waterways. After selecting the active ingredient, there still remains multiple proprietary and generic products to choose from. Recent small-scale research has been conducted to compare the efficacy of these herbicides against floating and emergent species. Therefore, a series of mesocosm and growth chamber trials were conducted to evaluate subsurface applications of the following herbicides against submersed plants: diquat versus coontail (Ceratophyllum demersum L.), hydrilla (Hydrilla verticillata L.f. Royle), southern naiad (Najas guadalupensis (Sprengel) Magnus), and Eurasian watermilfoil (Myriophyllum spicatum L.); flumioxazin versus coontail, hydrilla, and Eurasian watermilfoil; and triclopyr against Eurasian watermilfoil. All active ingredients were applied at concentrations commonly used to manage these species in public waters. Visually, all herbicides within a particular active ingredient performed similarly with regard to the onset and severity of injury symptoms throughout the trials. All trials, except diquat versus Eurasian watermilfoil, resulted in no differences in efficacy among the 14 proprietary and generic herbicides tested, and all herbicides provided 43%–100% control, regardless of active ingredient and trial. Under mesocosm and growth chamber conditions, the majority of the generic and proprietary herbicides evaluated against submersed plants provided similar control.
  • Evaluation of light limitation and depth on germinated seeds of two species of water chestnut cultured under experimental conditions

    Abstract: This technical note describes the results of a mesocosm experiment to determine the light and depth limitations of growth chamber germinated seeds of two species of water chestnut (Trapa spp.) naturalized in the northeastern United States.
  • Comparison of Generic and Proprietary Aquatic Herbicides for Control of Invasive Vegetation : Part 2. Emergent Plants

    Abstract: Aquatic herbicides are one of the most effective and widespread ways to manage nuisance vegetation in the US After the active ingredient is selected, often there are numerous proprietary and generic branded products to select from. To date, limited efforts have been made to compare the efficacy of brand name and generic herbicides head to head; therefore, at tot al of 20 mesocosm trials were conducted to evaluate various 2,4 -D, glyphosate, imazapyr, and triclopyr products against alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.), southern cattail (hereafter referred to as cattail, Typha domingensis Pers.), and creeping water primrose (hereafter referred as primrose, Ludwigia peploides (Kunth) P.H. Raven). All active ingredients were applied to foliage at broadcast rates commonly used in applications to public waters. Proprietary and generic 2,4 -D, glyphosate, imazapyr, and triclopyr were efficacious and provided 39 to 99% control of alligatorweed, cattail and primrose in 19 of the 20 trials. There were no significant differences i n product performance except glyphosate vs. alligatorweed (trial 1, Rodeo vs. Roundup Custom) and glyphosate vs. cattail (trial 1, Rodeo vs. Glyphosate 5.4). These results demonstrate under small -scale conditions, the majority of the generic and proprietary herbicides provided similar control of emergent vegetation, regardless of active ingredient.