Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: wetlands
Clear
  • Implementation of Flexible Vegetation into CSHORE for Modeling Wave Attenuation

    Abstract: This technical report presents the new numerical modeling capabilities for simulating wave attenuation and mean water level changes through flexible vegetation such as smooth cordgrass in coastal and marine wetlands. These capabilities were implemented into the Cross-SHORE (CSHORE) numerical model. The biomechanical properties of vegetation such as dimensions, flexibility, and bending strength are parameterized in terms of the scaling law. Correspondingly, a new formulation of the vegetation drag coefficient, CD, is developed using field data from a salt marsh in Terrebonne Bay, LA, by considering spatially varying effective stem and blade heights of species. This report also presents a general procedure for using the model to simulate hydrodynamic variables (i.e., waves, currents, mean water levels) at vegetated coasts, which are used to quantify the effects of wave attenuation and reduction of surge and runup due to vegetation. Preliminary model validation was conducted by simulating a set of laboratory experiments on synthetic vegetation, which mimicked the flexibility of Spartina alterniflora. The validation results indicate that the newly developed vegetation capabilities enable CSHORE to predict changes of wave heights and water levels through marshes by considering species-specific biomechanical features. The model is also applicable to assess vegetation effectiveness against waves and surges.
  • Antecedent Precipitation Tool (APT) Version 1.0: Technical and User Guide

    Abstract: This document provides an overview of the technical components of the Antecedent Precipitation Tool (APT) and a user guide for using the APT. The APT is an automation tool that the US Army Corps of Engineers (USACE) developed to facilitate the comparison of antecedent or recent precipitation conditions for a given location to the range of normal precipitation conditions that occurred during the preceding 30 yr¹. In addition to providing a standardized methodology to evaluate normal precipitation conditions (“precipitation normalcy”), the APT can assess the presence of drought conditions and the approximate dates of the wet and dry seasons for a given location.
  • Engineering With Nature®: Supporting Mission Resilience and Infrastructure Value at Department of Defense Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at seven military installations to achieve increased resilience through natural infrastructure.
  • Expert Elicitation Workshop for Planning Wetland and Reef Natural and Nature-Based Features (NNBF) Futures

    Abstract: This special report discusses the outcomes of a September 2019 workshop intended to identify barriers to the consideration and implementation of natural and nature-based features (NNBF) in US Army Corps of Engineers (USACE) civil works projects. A total of 23 participants representing seven USACE districts, the US Army Engineer Research and Development Center (ERDC), and the University of California–Santa Cruz met at USACE’s South Atlantic Division Headquarters in Atlanta, Georgia, to discuss how to facilitate the implementation of NNBF into USACE project planning for wetlands and reefs using six categories: (1) site characterization, (2) engineering and design analysis, (3) life-cycle analysis, (4) economic analysis, (5) construction analysis, (6) and operation and maintenance (and monitoring). The workshop identified seven future directions in wetland and reef NNBF research and development: • Synthesize existing literature and analysis of existing projects to better define failure modes. • Determine trigger points that lead to loss of feature function. • Identify performance factors with respect to coastal storm risk management (CSRM) performance as well as ecological performance. • Focus additional research into cobenefits of NNBF. • Quantify the economic life-cycle costs of a project. • Improve technology transfer with regards to NNBF research and topics.
  • Remotely Sensed Habitat Assessment of Bottomland Hardwood and Swamp Habitat: West Shore Lake Pontchartrain Hurricane Storm Damage Risk Reduction System Potential Impact Area

    Purpose: This study used remote sensing techniques to identify and assess the current condition of bottomland hardwood (BLH) and swamp habitats within the West Shore Lake Pontchartrain (WSLP) hurricane storm-damage risk reduction system (HSDRRS) project area. This effort provides baseline knowledge of the location and quality of these habitats prior to the construction of the WSLP HSDRRS project. The resultant products will assist the USACE—New Orleans District (MVN) by informing ecosystem decision-making related to environmental assessments.
  • Readily Available Hydrologic Models: Pertinence to Regulatory Application

    Purpose: Water is the driving force of wetlands. Hydroperiod represents both the frequency and duration of inundation or soil saturation whether it is from flooding or ponding. The formation of hydric soils and an expression of hydrophytic vegetation are evidence of the hydroperiod, which can be described along a gradient of hydrologic conditions (Figure 1). Hydrologic modeling provides a means to establish wetland hydroperiod, including current wetland hydrologic conditions and forecasting future conditions in response to future with and without wetland impacts or restoration actions. Today, fast computer processing and hydrologic models allow the user to make a large number of computations very rapidly on potentially large volumes of data. Currently, there is a myriad of hydrologic models available that offer an array of applications. For regulatory application, accurate determination of wetland hydrology is paramount to the following: - Confirm wetland hydrologic criteria in accordance to the US Army Corps of Engineers Wetland Delineation Manual (1987 Manual) and Regional Supplements. - Establish frequency and duration (hydroperiod) of wetland ponding and flooding. - Conduct wetland functional assessments including identification of predominant water source(s). - Estimate wetland impacts from regulated activities. - Determine ecological lift in response to restoration actions (compensatory mitigation). - Establish performance standards and success criteria for compensatory mitigation. - Facilitate development of a monitoring and adaptive management plan. The objective of this report is to provide a treatise of hydrologic models that offer specific application to establish wetland hydrology for existing and future conditions in response to regulated activities and restoration actions. The emphasis is on the suitability of existing hydrologic models to hydrogeomorphic (HGM) wetland classes. HGM subclasses are not addressed in this technical note. For more details on HGM classification, see Brinson (1993).
  • PUBLICATION NOTICE: Hydrodynamics of a Recently Restored Coastal Wetland: Hamilton Wetlands, California

    Abstract: Hamilton Wetlands is a recently restored tidally influenced basin located along the northwest coast of San Pablo Bay, California. Instruments to measure waves, currents, and wind were deployed for a period of up to 2 years shortly after tidal flow was re-introduced to the wetland to examine the sediment and hydrodynamic response. The results indicate that local re-suspension is relatively rare owing to the weak interior tidal currents and the limited fetch within the 3 km long basin. Asymmetries in the acoustic backscatter intensity combined with the much higher flow speeds measured at the entrance suggest a net import of fine sediment. The basin also experiences a distinct seasonal variation that likely contributes to sediment re-distribution. During the summer months, higher wind speeds correlate with turbidity suggesting local re-suspension of fines that are distributed by winds. Overall, the measurements suggest that the sediment dynamics in this shallow water system are controlled by two main factors: (1) net sediment import through the inlet entrance and (2) mixing of interior sediment through a combination of intermittent wind and wave stirring.