Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: inland navigation
Clear
  • AIS data case study: quantifying connectivity for six Great Lakes port areas from 2015 through 2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note presents results from a preliminary examination of commercial vessel traffic connectivity between six major port areas on the Great Lakes using Automatic Identification System data collected from 2015 to 2018. The six port areas included in this study are Calumet Harbor, IL and IN; Cleveland, OH; Detroit, MI; Duluth-Superior, MN and WI; Indiana Harbor, IN; and Two Harbors, MN. These six locations represent an important subset of the more than 100 federally authorized navigation projects in the Great Lakes maintained by the US Army Corps of Engineers. The results are presented in the context of USACE resilience-related policy initiatives as well as the larger topic of maritime system resilience.
  • Suppressing the pressure-source instability in modeling deep-draft vessels with low under-keel clearance in FUNWAVE-TVD

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) documents the development through verification and validation of three instability-suppressing mechanisms in FUNWAVE-TVD, a Boussinesq-type numerical wave model, when modeling deep-draft vessels with a low under-keel clearance (UKC). Many large commercial ports and channels (e.g., Houston Ship Channel, Galveston, US Army Corps of Engineers [USACE]) are traveled and affected by tens of thousands of commercial vessel passages per year. In a series of recent projects undertaken for the Galveston District (USACE), it was discovered that when deep-draft vessels are modeled using pressure-source mechanisms, they can suffer from model instabilities when low UKC is employed (e.g., vessel draft of 12 m¹ in a channel of 15 m or less of depth), rendering a simulation unstable and obsolete. As an increasingly large number of deep-draft vessels are put into service, this problem is becoming more severe. This presents an operational challenge when modeling large container-type vessels in busy shipping channels, as these often will come as close as 1 m to the bottom of the channel, or even touch the bottom. This behavior would subsequently exhibit a numerical discontinuity in a given model and could severely limit the sample size of modeled vessels. This CHETN outlines a robust approach to suppressing such instability without compromising the integrity of the far-field vessel wave/wake solution. The three methods developed in this study aim to suppress high-frequency spikes generated nearfield of a vessel. They are a shock-capturing method, a friction method, and a viscosity method, respectively. The tests show that the combined shock-capturing and friction method is the most effective method to suppress the local high-frequency noises, while not affecting the far-field solution. A strong test, in which the target draft is larger than the channel depth, shows that there are no high-frequency noises generated in the case of ship squat as long as the shock-capturing method is used.
  • Brunswick Harbor Numerical Model

    Abstract: The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.
  • Metrics for Assessing Overall Performance of Inland Waterway Ports: A Bayesian Network Based Approach

    Abstract: Because ports are considered to be the heart of the maritime transportation system, thereby assessing port performance is necessary for a nation’s development and economic success. This study proposes a novel metric, namely, “port performance index (PPI)”, to determine the overall performance and utilization of inland waterway ports based on six criteria, port facility, port availability, port economics, port service, port connectivity, and port environment. Unlike existing literature, which mainly ranks ports based on quantitative factors, this study utilizes a Bayesian Network (BN) model that focuses on both quantitative and qualitative factors to rank a port. The assessment of inland waterway port performance is further analyzed based on different advanced techniques such as sensitivity analysis and belief propagation. Insights drawn from the study show that all the six criteria are necessary to predict PPI. The study also showed that port service has the highest impact while port economics has the lowest impact among the six criteria on PPI for inland waterway ports.
  • Mississippi River Adaptive Hydraulics Model Development and Evaluation, Commerce to New Madrid, Missouri, Reach

    Abstract: A numerical, two-dimensional hydrodynamic model of the Mississippi River, from Thebes, IL, to Tiptonville, TN (128 miles/206 km), was developed using the Adaptive Hydraulics model. The study objective assessed current patterns and flow distributions and their possible impacts on navigation due to Birds Point New Madrid Floodway (BPNMF) operations and the Len Small (LS) levee break. The model was calibrated to stage, discharge, and velocity data for the 2011, 2015–2016, and 2017 floods. The calibrated model was used to run four scenarios, with the BPNMF and the LS breach alternately active/open and inactive/closed. Effects from the LS breach being open are increased river velocities upstream of the breach, decreased velocities from the breach to Thompson Landing, no effects on velocity below the confluence, and cross-current velocities greater than 3.28 ft/s (1.0 m/s) within 1186.8 ft (60 m) of the bankline revetment. Effects from BPNMF operation are increased river velocities above the confluence, decreased velocities from the BPNMF upper inflow crevasse (Upper Fuseplug) to New Madrid, cross-current velocities greater than 1.5 ft/s (0.5 m/s) only near the right bank where flow re-enters the river from the BPNMF lower inflow/outflow crevasse Number 2 (Lower Fuseplug) and St. Johns Bayou.
  • PUBLICATION NOTICE: Three Rivers, Southeast Arkansas Navigation Study: Ship Simulation Report

    Abstract: The McClellan-Kerr Arkansas River System (MKARNS) is a major inland waterway that begins at the Port of Catoosa in Tulsa, OK, and travels to the confluence of the White and Mississippi Rivers. Over the years, many structures have been built to help control overland flow between the White, Arkansas, and Mississippi Rivers. These structures have required a significant amount of rehabilitation, which has resulted in high maintenance costs. The US Army Corps of Engineers and the Arkansas Waterways Commission conducted the Three Rivers Southeast Arkansas Feasibility Study (also known as the Three Rivers Study). The Three Rivers Study focused on providing long-term dependable navigation in the MKARNS. From this study, a proposal was developed that included a 1,000 ft reopening of the Historic Cutoff and a reinforcement of several areas near the White River. In 2019, the US Army Engineer Research and Development Center Ship/Tow Simulator was used to perform a navigation study to ensure the proposed modifications did not negatively impact navigation on the White River section of the MKARNS. Assessment of the proposed modifications was accomplished through analysis of ship simulations completed by experienced pilots, discussions, track plots, run sheets, and final pilot surveys.
  • PUBLICATION NOTICE: Hydraulic Analysis and Modeling of Navigation Conditions near the Mississippi River Bridges in Vicksburg, Mississippi

    Abstract: The River and Estuarine Engineering Branch of the Coastal and Hydraulics Laboratory developed a two-dimensional numerical model of the Mississippi River near Vicksburg, MS, using Adaptive Hydraulics to investigate navigation conditions through the Interstate 20 and Old Highway 80 Bridges reach. A focus of the study was determining the Marshall Brown Dikes impact to velocities and navigation through the reach. Proposed dikes, focused on improving currents, were also tested to determine if they are a feasible option to improve navigability through the bridges. A second proposed alternative, a levee to protect the articulated concrete mattress (ACM) field, was also simulated to determine if flood damage to the ACM field could be successfully reduced without negatively impacting navigation. Velocity data from 2008 throughout the reach of concern were used for validation along with water surface elevation data from 2008, 2011, 2016, and 2018. The Marshall Brown Dikes were shown to have a localized impact on velocities near the dikes, but the changes to the velocity downstream near the bridge were negligible for all tested flow rates. Simulations of the proposed dikes did not result in an improvement to navigation conditions, but the proposed levee was successful in decreasing velocities and depths over the ACM field.
  • PUBLICATION NOTICE: Evaluation of the Potential Impacts of the Proposed Mobile Harbor Navigation Channel Expansion on the Aquatic Resources of Mobile Bay, Alabama

    Abstract: This report assesses potential impacts to aquatic resources resulting from proposed navigation channel expansion activities within Mobile Bay, Alabama. This work was conducted for the U.S. Army Corps of Engineers (USACE) Mobile District, to support development of a supplemental Environmental Impact Statement. Changes in water quality and hydrodynamics were evaluated for potential impacts to benthic macroinvertebrates, wetlands, submerged aquatic vegetation, oysters, and fish. The assessment includes extensive characterization of baseline conditions, evaluation of estimated post-project conditions related to aquatic resource habitat (e.g., changes in salinity, dissolved oxygen). An analysis of potential impacts related to a 0.5-m sea level rise scenario were also evaluated. Results suggest that no substantial impacts in aquatic resources within the study area are anticipated due to project implementation, as the area of greatest potential changes to environmental conditions are already adapted to natural shifts in salinity (and other factors), and to conditions resulting from the existing navigation channel. Although sea level rise has the potential to alter aquatic resource habitats with Mobile Bay, additional impacts related to project implementation remain negligible under the 0.5-m sea level rise scenario.
  • PUBLICATION NOTICE: Towing Vessel Delays and Barge Lane Navigability along the Houston Ship Channel, Texas

     Link: http://dx.doi.org/10.21079/11681/35182Report Number: ERDC/CHL TR-20-1Title: Towing Vessel Delays and Barge Lane Navigability along the Houston Ship Channel, TexasBy Kenneth N. Mitchell, Patricia K. DiJoseph, Brandan M. Scully, and Marin M. KressApproved for Public Release; Distribution is Unlimited January 2020Abstract: This project used
  • PUBLICATION NOTICE: Measuring Climate and Extreme Weather Vulnerability to Inform Resilience Report 2: Port Decision-Makers’ Barriers to Climate and Extreme Weather Adaption

     Link: http://dx.doi.org/10.21079/11681/35199Report Number: ERDC/CHL CR-19-3Title: Measuring Climate and Extreme Weather Vulnerability to Inform Resilience Report 2: Port Decision-Makers’ Barriers to Climate and Extreme Weather AdaptionBy Elizabeth L. Mclean and Austin Becker Approved for Public Release; Distribution is Unlimited November