Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: flood control
Clear
  • Engineering With Nature® Principles in Action: Islands

    Abstract: The Engineering With Nature® (EWN) Program supports nature-based solutions that reduce coastal-storm and flood risks while providing environmental and socioeconomic benefits. Combining the beneficial use of dredged sediments with the restoration or creation of islands increases habitat and recreation, keeps sediment in the system, and reduces coastal-storm and flood impacts. Given the potential advantages of islands, EWN seeks to support science-based investigations of island performance, impacts, and benefits through collaborative multidisciplinary efforts. Using a series of case studies led by US Army Corps of Engineers (USACE) districts and others, this technical report highlights the role of islands in providing coastal resilience benefits in terms of reducing waves and erosion as well as other environmental and socioeconomic benefits to the communities and the ecosystems they reside in.
  • Tar-Pamlico and Neuse River Basins, North Carolina, Geomorphic Summary Report

    Abstract: The Tar-Pamlico and Neuse River Basins are neighboring basins in eastern North Carolina, both originating in the piedmont physiographic region, transitioning to coastal plains, and emptying into Pamlico Sound. The Pittsburgh District is responsible for the continued efforts to assist local sponsors with managing these basins and submitted a Water Operations Technical Support (WOTS) request. The WOTS program, funded by Headquarters, US Army Corps of Engineers, provides funding for the Coastal and Hydraulics Laboratory (CHL) to provide technical assistance to develop innovative solutions to water resource problems. The objectives of this study are to identify flood risk management alternatives to address the accumulation of woody debris in the channel systems. CHL compiled existing conditions information and researched current and potential new methods for managing woody debris to provide a comprehensive list of recommendations. The results and recommendations are provided in this document.
  • Three-Dimensional Underseepage Evaluation for Profit Island Vicinity Levee, North of Baton Rouge, Louisiana

    Abstract: This project developed a three-dimensional (3D) seepage model to evaluate efficiency of 84 relief wells and factors of safety (FoS) along the Profit Island vicinity levee (PIVL), north of Baton Rouge, Louisiana. The PIVL model was built based on US Geological Survey MODFLOW-USG. Moreover, a 3D seepage model of RocScience RS3 was also built for a specific study of relief well experiments conducted by the US Army Corps of Engineers in the 1930s and 1940s. The PIVL model was calibrated with measured piezometric head data and relief well flow rates in 1997. Six flood scenarios were conducted: the extreme flood (56 feet), design flood (52.4 feet), 1997 flood (50 feet), 2008 flood (49.22 feet), 2017 flood (45.55 feet), and 2018 flood (49.1 feet). The modeling results show that FoS are all above 1.5 given relief wells at the 1997 design condition. FoS calculated by the blanket theory are more conservative than those by the PIVL model because designed discharge rates were not observed in the field. In comparison with measured flow rates in 2008, the PIVL modeling result indicates potential clogging at many relief wells. New piezometric data and well discharge data are recommended to re-evaluate factors of safety.
  • Hydrodynamics in the Morganza Floodway and Atchafalaya Basin, Report 3: Phase 3; A Report for the US Army Corps of Engineers, MRG&P

    Abstract: The Morganza Floodway and the Atchafalaya Basin, located in Louisiana west of the Mississippi River, were evaluated using a two-dimensional Adaptive Hydraulics model. Prior to this study, Phase 1 and 2 model studies were performed that indicated that the existing floodway may not be able to pass the Project Design Flood discharge of 600,000 cubic feet per second due to levee overtopping. In this study, all elevations of exterior and interior levees were updated with current crest elevations. In addition, the Phase 3 effort evaluated the sensitivity of the floodway’s flow capacity to variations in tree/vegetation density conditions. These adjustments in roughness will improve the understanding of the role of land cover characteristics in the simulated water surfaces. This study also provides a number of inundation maps corresponding to certain flows through the Morganza Control Structure.
  • Development of a Sand Boil Testing Laboratory and Preliminary Results

    Purpose: To document the purpose, use, and preliminary results of a full-scale sand boil generator developed at the Geotechnical and Structures Laboratory.
  • Engineering With Nature: The Role of Mangroves in Coastal Protection

    Purpose: The purpose of this Engineering With Nature technical note (EWN TN) is to review previous studies of mangroves as a nature-based adaptation alternative for coastal protection and flood hazard mitigation.
  • Engineering With Nature®: Supporting Mission Resilience and Infrastructure Value at Department of Defense Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at seven military installations to achieve increased resilience through natural infrastructure.
  • Backward Erosion Testing: Magnolia Levee

    Abstract: Using a confined flume device, an experimental study investigated the critical horizontal gradient of soils obtained from a site identified as potentially vulnerable to backward erosion piping (BEP). Tests were conducted on glacial outwash material obtained from a sand and gravel quarry in the vicinity of Magnolia Levee in the community of Magnolia, OH. The two bulk samples collected from the quarry had similar grain-size distributions, grain roundness, and depositional environments as the foundation materials beneath the levee. Samples were prepared at various densities and subjected to gradual increases of flow in a wooden flume with an acrylic top until BEP was observed. The critical average horizontal gradient ranged from 0.21 to 0.30 for a bulk sample with a coefficient of uniformity of 1.6, while tests conducted on a bulk sample with a coefficient of uniformity of 2.5 yielded critical average horizontal gradients of 0.31 to 0.36. The critical average gradients measured during these tests compared favorably to values in the literature after applying adjustments according to Schmertmann’s method.
  • Backward Erosion Progression Rates from Small-Scale Flume Tests

    Abstract: Backward erosion piping (BEP) is an internal erosion mechanism by which erosion channels progress upstream, typically through cohesionless or highly erodible foundation materials of dams and levees. As one of the primary causes of embankment failures, usually during high pool events, the probability of BEP-induced failure is commonly evaluated by the U.S. Army Corps of Engineers for existing dams and levees. In current practice, BEP failure probability is quantitatively assessed assuming steady state conditions with qualitative adjustments for temporal aspects of the process. In cases with short-term hydraulic loads, the progression rate of the erosion pipe may control the failure probability such that more quantitative treatment of the temporal development of erosion is necessary to arrive at meaningful probabilities of failure. This report builds upon the current state of the practice by investigating BEP progression rates through a series of laboratory experiments. BEP progression rates were measured for nine uniform sands in a series of 55 small-scale flume tests. Results indicate that the pipe progression rates are proportional to the seepage velocity and can be predicted using equations recently proposed in the literature.
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 1 – Background and Approach

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP runup and overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM structure crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide CSRM structure elevations.