Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Ohio River
Clear
  • Potential Lock Operations Management Application (LOMA) Hardware Installation Sites along the Ohio River to Improve Automatic Identification System (AIS) Reception and Transmit Range

    Abstract: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to propose a list of candidate sites along the Ohio River for the installation of Automatic Identification System (AIS) shoreside towers within the US Army Corps of Engineers (USACE) Lock Operations Management Application (LOMA) program. The LOMA program manages a network of terrestrial (shoreside) AIS sites (Figure 1) and vessel-mounted AIS sites with receive and transmit capability. However, there are known limits to the reception and transmission areas served by existing shoreside towers (referred to as “coverage gaps”) along the Ohio River (DiJoseph et al. 2021). Parties interested in improving AIS coverage to enhance maritime domain awareness and navigational safety along the Ohio River may wish to pursue the installation of LOMA program hardware for this purpose.
  • A Method for Evaluating Automatic Identification System (AIS) Coverage on Select Inland Waterways in 2020 and 2021: Upper Mississippi River, Illinois River, and Ohio River

    Abstract: The Automatic Identification System (AIS) shares vessel position information for navigational safety purposes. AIS broadcasts are received by other ships and terrestrial stations; however, in some areas there is no, or low, terrestrial station coverage to receive broadcasts. The US Army Corps of Engineers (USACE) developed an Online Travel Time Atlas (OTTA) to process AIS data and derive a transit count. This study examined OTTA output from 2020 and 2021 to identify areas of high or low AIS coverage along the Upper Mississippi, Illinois, and Ohio Rivers. Segments with a yearly average of two or more transit per day were classified as high coverage, those with less than a yearly average of two transits per day were classified as low coverage. Rivers were segmented using the USACE National Channel Framework reach boundaries. Results based on calculated vessel transits were as follows: Upper Mississippi River: 837.4 miles (98%) had high coverage, with 17.4 miles (2%) of low coverage; Illinois River: 190.5 miles (59%) had high AIS coverage, and 133 miles (41%) had low AIS coverage; Ohio River: 644 miles (66%) had high coverage, and 337 miles (34%) had low coverage. AIS coverage could be improved by raising antennae heights, installing repeater equipment, or adding towers.
  • Wabash and Ohio River Confluence Hydraulic and Sediment Transport Model Investigation: A Report for US Army Corps of Engineers, Louisville District

    Abstract: Avulsions of the Wabash River in 2008 through 2011 at its confluence with the Ohio River resulted in significant shoaling in the Ohio River. This caused a re-alignment of the navigation channel and the need for frequent dredging. A two-dimensional numerical hydrodynamic model, Adaptive Hydraulics (AdH), was developed to simulate base (existing) conditions and then altered to simulate multiple alternative scenarios to address these sediment issues. The study was conducted in two phases, Phase 1 in 2013 – 2015 and Phase 2 in 2018 – 2020. Field data were collected and consisted of multi-beam bathymetric elevations, bed sediment samples, suspended sediment samples, and discharge and velocity measurements. The model hydrodynamic and sediment transport computations adequately replicated the water surface slope, flow splits, bed sediment gradations, and suspended sediment concentrations when compared with field data. Thus, it was shown to be dependable as a predictive tool. The alternative that produced the most desirable results included a combination of three level-crested emergent dikes on Wabash Island and four submerged dikes on the Illinois shore with a level crest from the bank to the tip of the dike. The selected alternative produced an improved sailing line while maintaining authorized channel depths.
  • AIS data case Study: identifying AIS coverage gaps on the Ohio River in CY2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note describes a method for evaluating the received coverage from Automatic Identification System shore sites and the availability of historic vessel position reports along the Ohio River. The network of AIS shoreside sites installed and operated by the US Army Corps of Engineers and the US Coast Guard receive information transmitted from vessels; however, reception of these transmissions is generally line-of-sight between the vessel and the AIS site antenna. Reception may also be affected by factors such as the quality of the transceiver installation aboard the vessel as well as the state of the equipment at the receiving site. Understanding how to define and quantify coverage gaps along the inland river system can inform research utilizing AIS data, provide information on the performance of the AIS network, and provide guidance for efforts to address identified coverage gaps.